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1  Introduction
Recent work on the stability of banking 
systems suggested a systematic relation-
ship between network topology, system 
stability and contagion (Boss et al., 
2004). Similarly, Soramäki et al. (2007) 
conjectured that network topology 
might be relevant for the stability char-
acteristics of payment systems. In pre-
vious research (Schmitz and Puhr, 
2007), we uncovered a large variation 
of the contagion impact across days, 
banks as well as scenarios. Here, we
investigate whether the position of the 
stricken account within the network 
explains its contagion impact and 
whether daily variation in network
topology explains the variation of con-
tagion across days.

In section 2 we provide a brief mo-
tivation for studying network topology 
in network stability. In section 3 we 
present data on the network topology 
of the Austrian large-value payment 
system ARTIS and compare them with 
the respective results for the U.S. large-
value payment system FedWire and for 
the Austrian interbank market. Section 4 

introduces the simulations, and based 
on the results, we discuss the following 
questions: Which accounts cause con-
tagion in the system and on what scale? 
How many accounts are systemically 
important? In section 5 we address the 
questions: Do network indicators at the 
network level on the day of an opera-
tional failure relate to the contagion
effects in the simulations? And second, 
do network indicators at the node level 
of the stricken participant on the day of 
the operational incident relate to the 
contagion effects in the simulations? 
Section 6 summarizes the results.

2  Fundamentals of Network 
Topology and Network
Stability

Many networks in the real world (e.g. 
the Internet, the World Wide Web, 
large-value payment systems, such as 
FedWire in the U.S.A. and BOJ-NET 
in Japan, the Austrian interbank
market) are scale-free networks. Their
degree distribution follows a power law 
P(k)~k–P(k)~k–P(k)~k ©, i.e. the probability that a node 
has k degrees is k–k–k ©. A few nodes have a 
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large number of links, while most nodes 
have only a few links. The network 
characteristics of scale-free networks 
are independent of the number of nodes 
and links. They are robust with respect 
to random node removal, but disinte-
grate quickly in case of a targeted at-
tack, when the most highly connected 
nodes are removed step by step. Ran-
dom networks constitute a different 
class of networks. They are character-
ized by a homogenous network struc-
ture, i.e. all nodes have a similar num-
ber of links. Random networks are less 
robust against random node removal, 
but are more stable with respect to tar-
geted attacks than scale-free networks. 

Albert et al. (1999, 2000) study the 
robustness of the World Wide Web (a 
subset of the WWW with 325,729 
nodes and an average degree k=3.93) 
and the Internet (at the inter-domain 
level with 6,209 nodes and k=4.59). 
They remove a fraction of the nodes 
and links from the network in a step-
wise procedure. The node removals 
cause the disappearance of all links to 
and from the removed nodes and re-
duce the network’s connectivity. Some 
shortest paths between nodes become 
no longer available; some clusters of 
nodes that used to connect to the rest 
of the network get disconnected. In the 
case of random node removal, a shock 
is simulated by removing a random 
sample of nodes and, in the case of tar-
geted attacks, by removing the most 
highly connected nodes in the network. 
Albert et al. (1999, 2000) find that the 
size of the largest cluster of nodes in 
the WWW and the Internet decreases 
very slowly under random node re-
moval, but rapidly under targeted at-
tacks. Under the former, the networks 
disintegrate when about 60% (WWW) 
and 80% (Internet) of all nodes are re-
moved. Under the latter, the networks 
break down after the removal of as few 

as about 0.07% (WWW) and 0.03% 
(Internet) of all nodes, respectively. 
The authors explain the robustness re-
sults by the scale-free characteristics of 
the networks as most nodes have few 
links. As a consequence, random node 
removal is likely to hit lowly connected 
nodes with little implications for the 
connectivity of the entire network. The 
heterogeneity of the nodes and their 
distribution are also the reason for the 
networks’ low robustness against tar-
geted node removal. Even after just a 
few rounds of removals, most of the 
highly connected nodes that link clus-
ters of lowly connected nodes have dis-
appeared and the network disinte-
grates. 

How relevant are these results for 
the study of the stability of large-value 
payment systems with respect to opera-
tional problems at individual partici-
pants? 

In Albert et al. (1999, 2000) the 
stability of the network is conceptual-
ized as the connectivity of the remain-
ing nodes and measured by the size of 
the largest cluster in the network and 
the average path length of the network. 
As the physical network structure of 
ARTIS is that of a complete network 
(participants may submit payments to 
each other via direct links rather than 
via hubs), connectivity is not a useful 
conceptualization of stability. The sta-
bility problem is not that Bank A can-
not make a payment to Bank C because 
of a broken link, but that Bank A might 
not have adequate liquidity. As connec-
tivity relates to the flow of liquidity in 
the system and the liquidity flows 
through hubs are higher than those 
through peripheral nodes, it plays an 
indirect role for the analysis of stability. 
Therefore, our measures of the conta-
gion impact of shocks focus on the ef-
fects shocks have on the flow of liquid-
ity (i.e. number of accounts with unset-
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tled payments and value of unsettled 
payments) rather than on the disinte-
gration of the network. 

3  The Network Topology
of ARTIS

The definition of the network under
investigation is not trivial in empirical 
network analysis. In the topology anal-
ysis we focus on the giant strongly con-
nected component (GSCC) of ARTIS.2

The GSCC is the largest component of 
the network, in which all nodes con-
nect to each other via directed paths
(i.e. without passing any node or link 
more than once). We have chosen this 
definition of the network for two rea-
sons: first, ARTIS contains a compara-
tively large number of accounts which 
are not relevant to financial stability

(e.g. small charities and offset accounts 
of the OeNB’s cash distribution subsid-
iary) and which are not active on most 
of the days in the sample. Second, we 
want to ensure the comparability of our 
data with those reported in Soramäki 
et al. (2006) for the GSCC of Fed-
Wire.

ARTIS processes on average 15,380 
transactions per day, with the daily
average value totaling EUR 48.5 bil-
lion. The average transaction size 
amounts to EUR 3.2 million. The size 
of the network is defined by the num-
ber of nodes n. On average there are 
133.2 accounts in the GSCC during the 
sample period, of which 63 are in the 
GSCC on all days. The active nodes are 
linked by an average of 1,376.1 directed 
links (m).3 The connectivity p of the 

Table 1

Network Topology Indicators (Network Level) in ARTIS (November 16, 2005 to November 16, 2007) 
and in FedWire (2004/Q1) (Averaged across Days; Network Definition: GSCC)

FedWire ARTIS

Mean Mean Median Min Max Stdv

Payments
Daily volume (number of transactions) 436,000 15,380 15,436 9,786 25,000 2,019
Daily value (EUR billion) 1,068 48.5 46.9 22.6 84.9 10.6
Average value per transaction (EUR million) 2.55 3.2 3 1.9 5.9 0.7

Connectivity measures
Connectivity (%) 0.3 7.9 7.9 5.9 9.9 0.8

Distance measures
Average path length 2.6 2.4 2.4 2.2 2.6 0.08
Diameter 6.6 4.4 4 4 5 0.5

Other measures
Clustering (%) 53 58.3 58.3 51 63.7 2.3
Average degree 15.2 15.6 15.5 14.2 17.8 0.6
Betweenness centrality (%) – 0.8 0.8 0.6 0.9 0.1
Dissimilarity index – 0.47 0.47 0.39 0.6 0.03

Source: Authors‘ calculations (ARTIS), Soramäki et al. (2006; FedWire). 

Note: The value and average value f igures for FedWire are converted into euro based on the USD/EUR exchange rate of 1.21730 of March 31, 2004. 

2 For mathematical definitions of the network indicators, see the Appendix in Schmitz and Puhr (2007) and Zhou 
(2003). For comparable data on the network of all active accounts, see Schmitz and Puhr (2007). For a descrip-
tion of the Austrian banking system, see OeNB and FMA (2004, pp. 50–55).

3 The average number of nodes in ARTIS active on every day was 209.8 and these were connected by 1,637.5
directed links.
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network is captured by the number of 
actual directed links relative to the 
number of possible directed links. Con-
nectivity p averages 7.9%. 

An indicator of the distance be-
tween nodes is the lowest possible num-
ber of links that connect each node 
with each other in the GSCC. It is
referred to as shortest path length. We 
calculate the average shortest path 
length for each originating node by
averaging across terminating nodes and 
then averaging across originating nodes 
to derive the average path length l of l of l
the entire network. Across days this 
value equals 2.4, meaning that it takes 
only slightly more than two links on
average to reach any terminating node 
in the network from any originating 
node in the network. Hence, the net-
work is compact, with almost all active 
nodes linked to the largest banks. This 
network structure is quite stable across 
days, as the standard deviation is low. 
The maximum path length across nodes 
is defined as diameter D. It is calculated 
by maximizing across maximum path 
lengths, which corresponds to picking 
an originating node at the very fringe 
of the network and counting the lowest 
possible number of links to the termi-
nating node that is farthest away from 
it. We thus obtain a value of 4.4 links. 

How well are the nodes connected 
to each other in the network? This is 
captured by the average degree k of the k of the k
network, which is calculated by sum-
ming across all (undirected) links orig-
inating from each node and then aver-
aging across nodes.4 Averaged also 
across days, k amounts to 15.6 in the k amounts to 15.6 in the k
ARTIS system. In other words, when 
you pick a node in the GSCC on a ran-
dom day in the sample period, it can be 

expected to have 15.6 links originating 
(or terminating) at it. A much larger 
number of links originates and termi-
nates at the most active nodes, how-
ever. The maximum out-degree aver-
ages 76 across days, so that the most
active node of each day has about five 
times as many links originating from it 
than the average node. The maximum 
in-degree (90) is similarly much higher 
than the average degree. The clustering 
coefficient provides a measure of the 
average connectivity of the neighbors of 
all nodes in the GSCC. On average, 
about 58% of the neighbors of each 
node are also interlinked. Betweenness 
centrality measures how many shortest 
paths through the GSCC pass through 
the average node. The value of 0.8% is 
quite low and stems from the central 
position of a few nodes with high be-
tweenness centrality and a large num-
ber of nodes with low values. The dis-
similarity index captures the relative 
viewpoints of the network from any 
two neighboring nodes. If the network 
looks very similar from the respective 
node pairs, the dissimilarity index is 
close to zero. In the GSCC, it amounts 
to 0.47, which implies that on average 
the perspectives of the GSCC differ 
substantially from any two neighboring 
nodes. Many nodes are linked to each 
other although not otherwise sharing 
many network characteristics. We in-
terpret that as further evidence that 
many of the nodes connect to the larg-
est nodes at the center of the network. 

How do these values compare with 
the results for FedWire? To begin with, 
we must bear in mind that the FedWire 
data refer to the first quarter of 2004. 
Value and volume in FedWire have cer-
tainly grown since then. Comparing a 

4 The out-degree refers to the number of links originating at the node, while the in-degree is based on the number 
of links terminating at the node. Across the network, the average out-degree and in-degree are equal to m/n,
respectively.
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small and a large network can yield
interesting insights into the structure 
of payment systems. The average num-
ber of nodes in the GSCC of FedWire 
(n=5,086) is about 38 times that in 
 ARTIS, implying that the number of 
possible directed links in FedWire is 
1,469 times higher than in ARTIS. But 
the average number of directed links
(m=76,614) is only about 55 times
that in ARTIS, so that connectivity 
should be lower in FedWire by a factor 
of about 26 (1,469 over 55). And in-
deed, the ratio between connectivity p
in ARTIS (7.9%) and that in FedWire 
(0.3%) is 26:1. A conjecture based on 
this observation is that the number of 
possible directed links grows exponen-
tially in payment systems, but the num-
ber of actual directed links only pro-
portionally. The distance measures
(average path length 2.6 vs. 2.4 and
diameter 6.6 vs. 4.4), however, seem to 
be quite independent of size, like in 
other small-world networks.5 The high 

clustering coefficients in both networks 
(on average 53% vs. 58% of the direct 
neighbors of each node are also linked) 
corroborate this finding. The average 
degrees of both networks are very simi-
lar too (15.6 vs. 15.2). 

Comparisons across networks are 
often based on the degree distribution. 
In scale-free networks, it follows a 
Yule-Simon (or power law) distribution  
P(x)~kyP(x)~kyP(x)~k  for degree values above a certain 
threshold. Many real world networks 
are said to follow a power law. The first 
indicator of the prevalence of the power 
law is that the histogram of the degree 
distribution (on logarithmic scales) is a 
straight line with slope – ©, whereby in 
many real networks –2>–©>–3. The co-
efficient © is estimated by a maximum 
likelihood estimator (e.g. Newman, 
2005). The respective value in Soramäki 
et al. (2005) is 2.11 for k>10 for Fed-
Wire and that in Inaoka et al. (2002) is 
2.3 for k>20 for BOJ-Net. For the
Austrian interbank market, Boss et al. 

5 In a small-world network, most nodes can be reached from each other by a small number of hops or steps, although 
connectivity is low and most nodes are not neighbors.

Histogram and Reverted Cumulated Distribution Function (on Logarithmic
Scales) of the Degree Distribution in the Monthly Network in ARTIS (GSCC)

Chart 1

Source: OeNB.
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(2004) report © for the in-degree, the 
out-degree and the degree distribution 
separately as 1.7, 3.1 and 2.0, respec-
tively, for k>40. For our monthly net-
work6 (degree range 1 to 1,925 for the 
nodes in the GSCC over a period of
20 days), the histogram seems to indi-
cate a power law distribution with 
©̂   ML©   ML©   =1.4 for k>10 (see left-hand panel of 
chart 1). However, Newman (2003)
argues that the plot of the cumulative 
distribution function (cdf, on logarith-
mic scales) must also be a straight line 
with slope –©+1. Newman argues that 
the cdf plot is superior to the histo-
gram, because it preserves all the infor-
mation in the data rather than throw 
out information by binning. In addi-
tion, it avoids the problem of noise in 
the tails that emerges from binning. We 
plot the cdf for the monthly network in 
the right-hand panel of chart 1. Obvi-
ously, the cdf is not a straight line and 
we reject the power law hypothesis for 
the ARTIS network.

It is also interesting to compare the 
network indicators of the ARTIS sys-
tem with the two network indicators
of the Austrian interbank market pre-
sented in Boss et al. (2004; the data 
cover the period from 2000 to 2003). 
As they are settled through ARTIS, in-
terbank market transactions can be in-
terpreted as a subset of the transactions 
processed by ARTIS. The authors find 
an average path length of 2.26±0.02, 
which is very close to the respective 
figure in table 1 of 2.3±0.05. This sim-
ilarity arises because both the interbank 

market and the payment system are 
dominated by large banks. In both mar-
kets, many banks cluster around their 
sectoral central institutions.7 However, 
the clustering coefficient is substan-
tially higher in ARTIS than in the inter-
bank network. Maintaining interbank 
relationships is costly, so banks have to 
balance the advantages of diversifica-
tion with the costs of maintaining links. 
This is clearly not the case in the com-
plete physical network of the large-
value payment system, where the mar-
ginal costs of an additional link are 
zero. In addition, transactions in AR-
TIS are partly driven by customer pay-
ments (roughly 20% of the total value). 
These reflect the network structure of 
real economic activity, which does not 
necessarily mirror the structure of the 
interbank market.

4  The Simulations: Methods, 
Data and Results

We conducted 31,311 simulations based 
on 63 different scenarios for 497 trans-
action days with roughly 650 million 
transactions from November 16, 2005, 
to November 16, 2007 (excluding
Austrian holidays).8 These simulations
were calculated with a self-implemented 
Matlab-based software tool (inspired 
by the Bank of Finland Payment Sys-
tem Simulator), which was tailored to 
ARTIS particularities. The tool recal-
culates each day’s transactions by add-
ing incoming payments to and subtract-
ing outgoing payments from the respec-
tive accounts of the participants. As the 

6 We conducted the same exercise for the daily, the quarterly and the semiannual networks with the same results.
7 Of the seven sectors the Raiffeisen credit cooperative, the Volksbanken credit cooperatives and the savings banks 

have a tiering structure. They account for about 80% of Austrian banks in terms of the number of credit institu-
tions and for about 50% in terms of total assets (unconsolidated). In addition, there is no national automated 
clearing house in Austria and the Austrian banking system relies on correspondent banking relationships to settle 
a range of customer payments (e.g. credit transfers). The banks that operate in ARTIS have direct access to the 
system based on their own in-house systems. Although IT solutions within sectors are often similar, there is no 
evidence that operational risk is correlated across individual banks within a sector.

8 For more details on the simulations, their motivation and design, see Schmitz and Puhr (2007). The operation of 
ARTIS was discontinued after November 16, 2007, due to the introduction of TARGET2.
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transactions in the input data set pro-
vide time stamps, the simulator recal-
culates the balances of all participants 
of the system throughout the day de-
pending on the institutional features of 
the system (e.g. settlement algorithm, 
queue release mechanism). The institu-
tional features of the system that could 
not be accounted for in the simulator 
had to be mapped into the input data 
set. Since the tool cannot take system 
participants’ behavioral reactions into 
account, they must be determined ex-
ogenously. First of all, system partici-
pants might want to stop submitting 
payments to the participant experienc-
ing operational problems. A stop-send-
ing rule applies if a transfer account of a 
central bank in the TARGET system 
experiences an operational problem, 
i.e. no further payments are transferred 
to the stricken transfer account.9 Pay-
ments to other participants are not
affected. In cases of operational prob-
lems at other banks, ARTIS operators 
at the OeNB provided evidence that 
participants continue to submit pay-
ments to the affected participants, even 
if the latter cannot submit payments 
themselves for many hours. Second, 
participants could react to operational 
incidents by increasing available collat-
eral. Anecdotal evidence suggests that 
ARTIS participants already hold large 
shares of their eligible assets at the 

OeNB. Consequently, we assume that 
system participants are not increasing 
collateral for operational incidents with 
durations of up to one day. The simula-
tions are based on actual liquidity data 
for the sample period. We interpret the 
sum of beginning-of-day balances on 
ARTIS accounts plus unencumbered 
eligible collateral held at the OeNB as 
the binding liquidity constraint for 
banks. Third, the simulation algorithm 
takes into account debit authorization 
by banks for a number of other partici-
pants in ARTIS.10

The scenarios in Schmitz and Puhr 
(2007) were designed on the basis of 
the analysis of actual payment flows in 
ARTIS, focusing on the most active ac-
counts, which also featured the highest 
risk concentration measures during the 
sample period.11 This resulted in three 
scenarios: in the first, the most active 
transfer account12 was shocked; in the 
second, the most active bank account 
was assumed to experience operational 
problems; and in the third, the three 
most active bank accounts were stressed 
simultaneously. 

In this paper we run simulations for 
all 50 banks that are in the GSCC on all 
Austrian working days throughout the 
sample period and all 13 transfer
accounts that form part of the system 
on all days in the sample period. We
assume an operational incident that hits 

9 Due to the operating procedures, it actually takes about 40 minutes following the detection of the operational 
problem at the transfer account until a stop-sending rule is imposed. The implementation of the rule in the
simulation algorithm takes this small delay into account.

10 Participant A may grant participant B a debit authorization according to the Terms and Conditions Governing 
the OeNB’s ARTIS System (Article 9). Debit authorization is defi ned as the right of participant B to initiate 
(certain pre-agreed) payments from the account of participant A. Debit authorizations are granted to a small 
number of participants for prearranged purposes (very frequent recurring standard operations) and cannot be
interpreted as a crisis mitigation instrument available on short notice in the case of an operational incident.

11 The measures employed were (1) the value of liquidity concentrated at the nodes, (2) the number and value of
payments submitted and received (payment concentration channel), (3) the Herfi ndahl index of concentration of 
payment fl ows (based on both the number and the value of payments received and submitted) as well as (4) the 
monthly network topology.

12 Transfer accounts are ARTIS accounts held by other ESCB central banks at the OeNB. All national TARGET 
components are directly linked by transfer accounts. All transactions to and from the respective country and
Austria are routed via these transfer accounts.
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one account in each simulation. The 
operational incident is mapped into the 
simulation as the incapacitation of the 
participant to process outgoing pay-
ments, i.e. the inability to submit
transactions, for the whole day.13 This 
assumption is extreme but plausible. 
Shorter outages of participants may 
lead to payment delays but not to un-
settled payments, as shown in Schmitz 
and Puhr (2007). 

The results are graphically repre-
sented in the four panels of chart 2. In 
the upper left-hand panel, the number 
of contagious defaults per simulation 
(in terms of the number of banks with 
unsettled payments) is depicted on the 
x-axis, the number of simulations
that yield x contagious defaults on the 
y-axis. It is evident that about 27% of 
all simulations (8,604) do not lead to 
contagion at all. Another 26% (8,230) 
yield one contagious default and 16% 
(4,919) two such defaults. About 29% 
(5,456) lead to three to five contagious 
defaults and 17% (4,102) to more than 
five. The maximum contagious defaults 
across the 31,311 simulations amount 
to 33.

The time series of average conta-
gious defaults (in terms of the number 
of banks with unsettled payments) per 
day is featured in the upper right-hand 
panel. It is quite volatile with a stan-
dard deviation of about 25% of the 
mean. This motivates the investigation 
in subsection 5.1 as to whether the 
variation of network topology across 
days can contribute to the explanation 
of the fluctuations of average conta-
gious defaults per day.

The lower panels in chart 2 show 
the average contagious defaults per sim-

ulation (in terms of the number of 
banks with unsettled payments, lower 
left-hand panel) and the average value 
of unsettled payments due to conta-
gious defaults (lower right-hand panel) 
per simulation. We use this informa-
tion to derive the set of systemically 
relevant accounts. As argued above, 
connectivity is not an adequate crite-
rion to capture the systemic impact of 
an operational problem at one of the 
nodes in a large-value payment system. 
Alternatively, we suggest defining a 
threshold based on the average conta-
gion effect of an individual account. 
This threshold value, which can be 
measured by the number of contagious 
defaults or by the value of unsettled 
payments in the system, is somewhat 
arbitrary and depends on the risk aver-
sion of the supervisory authority. Set-
ting the threshold in terms of the num-
ber of contagious defaults at 1 (to cap-
ture accounts that yield at least an aver-
age of one bank with unsettled payments 
due to contagious default across the 
sample period), we find that only 39 
accounts in the GSCC are systemically 
relevant. This figure includes 11 trans-
fer accounts operated by central banks 
(lower left-hand panel of chart 2). The 
28 bank accounts constitute 12% of the 
average of 230 bank accounts in ARTIS 
(during the sample period) and repre-
sent about 3% of the average of 850 
banks in Austria. Defining the thresh-
old in terms of the value of contagious 
defaults to pinpoint only accounts that 
cause at least an average value of EUR 
48.5 million of unsettled payments (or 
0.1% of the average value of transac-
tions settled across days), we find that 
24 accounts are systemically relevant 

13  It is assumed that the resulting illiquidity of the participant is not interpreted as potential insolvency by other 
participants of the payment system and the fi nancial system at large. In addition, ARTIS provides business conti-
nuity arrangements for participants. We tested their impact in Schmitz and Puhr (2007), but disregard them in 
this paper, as they are of little relevance for the interaction between network topology and contagion.
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(lower right-hand panel of chart 2). 
Seven of these are transfer accounts, 
which leaves 17 bank accounts, which 
account for about 7% of the average of 
230 bank accounts in ARTIS (during 
the sample period) and for around 2% 
of the average of 850 banks in Austria. 

Given that transfer accounts do not 
hold any liquidity (i.e. the liquidity 
drain caused by their incapacitation is 

nil) and that the stop-sending rule
considerably reduces the liquidity sink 
effect, the strong contagion impact of 
transfer accounts is interesting. This
indicates that payment concentration 
risk is more important for the conta-
gion impact than liquidity concentra-
tion risk. The fact that TARGET2 op-
erates on a Single Shared Platform 
without highly contagious transfer ac-

Simulation Results

Chart 2

Source: OeNB.
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counts might increase the resilience of 
this critical infrastructure with respect 
to operational problems (though not 
necessarily at the platform level). 

The results suggest that the super-
vision of operational risk in banks’ pay-
ment processing/submission capacity 
could focus on a relatively small set of 
systemically relevant banks in Austria 
and on their business continuity ar-
rangements. 

4.1  Approximating a Probability 
Distribution across Contagious 
Defaults per Simulation

In section 3 we showed that large-value 
payment systems can have common 
network characteristics despite large 
differences in size. In order to be able 
to compare the simulation results across 
large-value payment systems, we esti-
mate the relation between the number 
of simulations and the number of con-
tagious defaults they cause (in terms of 
the number of banks with unsettled 
payments). Chart 2 (upper-left panel) 
reveals that the number of simulations  
y that involve a certain number of con-
tagion events x is a rather regularly de-
clining function in x. In this context it 
seems natural to look for a simple para-
metric probability distribution describ-
ing the number of occurrences of con-
tagion events in a simulation, given that 
contagion did actually occur. As such a 
distribution would attach positive prob-
abilities to low-probability high-impact 
events, it could be applied in future 
simulation studies for the analysis of 
extreme events. 

As candidate distributions, we con-
sidered discretized versions of the fol-
lowing continuous distributions: expo-
nential, Weibull and gamma. These 
three distributions are defined on the 

set of non-negative numbers and have 
one (exponential) or two (Weibull and 
gamma) parameters. Discretizing these 
distributions was accomplished in the 
following way: The probability of ob-
serving just one contagion event was 
set to the probability of observing the 
continuous distribution in the interval 
from zero to one; observing two conta-
gion events was related to the interval 
from one to two; and so on. The maxi-
mum likelihood method was used for 
estimating the unknown parameters. 

A graphical assessment of the ade-
quacy of the estimated distributions 
shows that exponential distributions 
are not flexible enough to describe the 
observed number of contagion events 
because this distributional family only 
has a scale but no form parameter. A 
much better fit is achieved by the 
Weibull and gamma distributions. 
When applying chi square tests for 
goodness of fit, however, it comes as no 
surprise that these distributions are re-
jected at any commonly used confi-
dence level as we are dealing with a 
very large number of observations 
(22,707).14 Nevertheless, it can be ob-
served that the Weibull distribution de-
livers a smaller value of the chi square 
statistic than the gamma, thus indicat-
ing a better fit of the former. For simu-
lations that show at least one contagion 
event, we conclude that the Weibull 
distribution is a reasonable choice for 
describing the probability that the num-
ber of observed contagion events C is C is C
equal to a positive integer n given by:
P{C=n}=Wei(n|a,b)–Wei(n–1|a,b) for all n≥  1,
where Wei(.|a,b) denotes the cumulative 
distribution function of a Weibull dis-
tribution with parameters a and b, de-
fined by
Wei(x|a,b)=1–exp(–(x/a)b) for all x≥   0b) for all x≥   0b .

14 Due to the large sample size, even small deviations of the fi tted values from the observed values lead to a formal 
rejection of the null hypothesis, which refl ects a common criticism of statistical tests (DeGroot, 1985).
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We thus approximate the distribu-
tion of the number of contagious de-
faults in a simulation given that conta-
gion actually by means of a discretized 
Weibull distribution with â â aMLaMLa = 2.61 and 
b̂MLLbMLLb = 0.77. 

5  The Interaction between
Network Topology and
Stability in ARTIS

In this section, we investigate whether 
the variation of network indicators at 
the network level across days (subsec-
tion 5.1) and at the node level across 
stricken accounts (subsection 5.2) ex-
plains the variation of contagion across 
days and across stricken accounts. 

Selecting the appropriate measure 
of network topology is not trivial as the 
number of available indicators is large. 
At the network level, we calculate 44 
network indicators, taking into account 
not only those in table 1, but also the 
directed and/or value-/volume-weighted 
and/or average/maximum values for 
selected indicators. Similarly, the num-
ber of indicators available at the node 
level comes to 71. 

Boss et al. (2004) relate contagion 
in the interbank market to betweenness 
centrality at the node level, because 
this measure has a higher explanatory 
value than the alternative network
indicators in their data set. They un-
cover a dented linear relationship. 
Banks with betweenness centrality 
measures 0≤C B(h)≤  2 do not cause any 
contagious defaults. For C B(h)>2 they 
find a linear relationship with a slope of 
about 0.8. 

Borgatti (2005) studies the selec-
tion of the appropriate centrality mea-
sure for various typologies of flow pro-
cesses. He classifies flows along two
dimensions: the characteristics of the 
route through the network and the 
characteristics of the transfer mode. 
The first dimension encompasses paths, 

trails and walks. Paths are sequences of 
links and nodes in which neither links 
nor nodes are repeated (shortest paths 
are a special case of paths.) Trails refer 
to sequences in which nodes, but not 
links, may be repeated. Walks are
unconstrained sequences. The second 
dimension refers to how the flowing 
good is passed on along the route from 
one node to another. While a disease 
can be passed on without implying the 
immediate cure of the carrier (Borgatti 
refers to this as parallel duplication),
liquidity is transferred so that the ini-
tial holder has to part with it (referred 
to as transfer). What does this imply for 
the flow of liquidity in ARTIS? In a 
physically complete network, banks do 
not have to make payments to other 
banks via third parties. Instead, they 
transfer directly to the ultimate re-
ceiver. However, the flow of liquidity 
does not stop there. Liquidity can be 
transferred to any other node in the 
network (including the submitter of the 
first payment). Where liquidity ulti-
mately ends up is beyond the control 
(and interest) of the initial submitter of 
a payment. This implies that liquidity 
flow follows a walk rather than a path 
or a trail. Given that betweenness cen-
trality is based on the share of all short-
est paths through a node, it is not a good 
measure of centrality in the study of
liquidity flows. Degree centrality is 
more suitable. 

We present our results in terms of 
four network indicators for three rea-
sons: First, we believe that, given the 
nature of liquidity flows, degree cen-
trality is the appropriate measure. Sec-
ond, we want to ensure a high degree 
of comparability of our results with 
other papers that use different network 
indicators (such as betweenness cen-
trality). Third, we want to investigate 
whether network indicators in general 
add value to the more traditional mea-
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sure used in comparable simulation 
studies (i.e. the size of the individual 
node in terms of value and volume of 
transactions). Therefore we focus on 
the measures value and volume as well 
as on the network indicators degree, 
average path length, betweenness cen-
trality and dissimilarity index in each 
of the following two subsections. 

5.1  Network Level
In chart 3 we depict the daily value 
(left-hand panel) and the daily volume 
of all payments (right-hand panel) sub-
mitted to ARTIS on the y-axis and the 
number of contagious defaults (in terms 
of the number of banks with unsettled 
payments daily averages across scena-
rios) per day on the x-axis. The varia-

Value and Volume (Network Level) per Day versus Average Number of Contagious
Defaults per Day

Chart 3

Source: OeNB.
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tion of value explains 2% and the varia-
tion of volume accounts for 8% of the 
variation of the contagion impact per 
day. 

The explanatory value of the vari-
ables value and volume is low. Do net-
work indicators perform any better? In 
chart 4 we look at the following indica-
tors (unweighted, undirected): degree, 
average path length, betweenness cen-
trality and dissimilarity index. Simi-
larly to chart 3, the daily number of 
contagious defaults (in terms of the 
number of banks with unsettled pay-
ments) is depicted on the x-axis and the 
daily values of the respective network 
indicator are shown on the y-axis in 
each panel. 

The average path length (15%) and 
betweenness centrality (13%) have the 
highest explanatory values. The daily 
variation in degree accounts for 10% of 
the variation in contagion and that of 
the dissimilarity index for only 3%.
Although the explanatory power of 
three of the network indicators is higher 
than that of value and volume, the lev-
els are still low. The highest explana-

tory power of any of the remaining 39 
indicators is 15.4% (average number-
weighted clustering coefficient), while 
a number of indicators have no explana-
tory power at all. We conclude that 
daily variations in network structure 
are of limited use in the stability analy-
sis of ARTIS. However, this does not 
preclude that structural differences 
across networks might influence a net-
work’s relative resilience. But as shown 
above, even large-value payment sys-
tems which display considerable differ-
ences in size share notable structural 
commonalities. 

5.2  Node Level

In this subsection, we study the large 
dispersion of contagion effects caused 
by different nodes (see lower panels of 
chart 3). Do the different positions of 
the nodes (that experience the opera-
tional shock) in the network account 
for this variation? In chart 5 we plot the 
value and volume of payments of the 
stricken node in each simulation against 
its contagion effect in terms of the 
number of contagious defaults (in terms 

Value and Volume (Node Level) per Stricken Account versus Number of
Contagious Defaults per Simulation

Chart 5

Source: OeNB.
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of the number of banks with unsettled 
payments), i.e. each panel contains 
31,311 data points. In addition, the data 
points of the three most active banks 
(Bank A, B, and C) and of the most
active transfer account (Transfer Ac-
count 1) are colored (see the legend of 
chart 5), while those of all other bank 
accounts and of all other transfer ac-
counts are dark grey and light, respec-
tively. The variations of value and vol-
ume across simulations explain 73% 
and 68% of the variation of the conta-
gion impact across simulations. The 
slopes have the expected signs: more 
active nodes cause more contagion. The 
differentiation among simulations ac-
cording to the shocked account reveals 
a pronounced grouping in both panels. 
In the right-hand panel, it also points to 

structural differences in contagion im-
pact not accounted for by variations in 
volume. Transfer Account 1 and Bank 
B tend to group below the regression 
line (i.e. they cause more contagion 
than estimated by their volumes of 
transactions) and Banks A and C above 
the regression line (i.e. they cause less 
contagion than estimated by their vol-
umes of transactions).

In chart 6 we plot four network in-
dicators (degree, average path length, 
betweenness centrality and dissimilar-
ity index) of each stricken node against 
its contagion effect in terms of the 
number of contagious defaults (i.e. each 
panel contains 31,311 data points). In 
addition, the data points of Banks A, B, 
and C and Transfer Account 1 are dif-
ferentiated in the same way as in 

Network Indicators (Node Level) per Stricken Account versus Number of
Contagious Defaults per Simulation

Chart 6

Source: OeNB.
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chart 5. The explanatory values of all 
four network indicators are quite high; 
the simplest measure degree yields an 
R² of 64%, variations in average path 
length across simulations account for 
59% of the variation of the number of 
contagious defaults across simulations. 
The more complex measures between-
ness centrality and dissimilarity index 
yield an R² of 52% and 62%, respec-
tively. These values are in the order of 
magnitude of the reported interaction 
between betweenness centrality and 
contagious defaults for the Austrian in-
terbank market (Boss et al., 2004). The 
signs of the slopes are in line with ex-
pectations: simulations in which more 
active and more central nodes are 
shocked feature a higher contagion im-
pact. The remaining 65 network indi-
cators yield explanatory values between 
nil (number-weighted average path 
length based on payments received) and 
77% (relative volume of payments re-
ceived). The results demonstrate that 
network indicators at the node level can 
indeed explain large parts of the varia-
tion in contagion across stricken ac-

counts. However, network indicators 
seem to add little to the high explana-
tory values of the traditional measures 
of activity (value and volume). Further-
more, the large set of available indica-
tors and the huge differences in their 
explanatory values pose a data mining 
problem. The differentiation according 
to the stricken account confirms the 
pronounced grouping evident also in 
chart 5. In all four panels, simulations 
based on Transfer Account 1 cluster at 
the right-hand side of the regression 
line, while those based on Bank C and 
to a lesser extent those of Bank A lie to 
the left of the regression line. This find-
ing points to structural differences in 
contagion impact, which are not ac-
counted for by measures of activity or 
network indicators and warrant further 
research. 

We also investigate the interaction 
between network topology and net-
work stability for another measure of 
contagion, namely the value of unset-
tled payments. Again we start with the 
analysis of the explanatory value of 
node size, i.e. of value and volume of 

Value and Volume (Node Level) per Stricken Account versus Value of Contagious
Defaults per Simulation

Chart 7

Source: OeNB.
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payments originating at the node 
(chart 7). Variations in value explain 
54% and in volume 39% of the varia-
tion in contagion. Both values are lower 
than the respective results in chart 5. 

How well do the network indica-
tors at the node level fare in compari-
son? The explanatory values are similar 
for the four network indicators (degree 
28%, average path length 25%, be-
tweenness centrality 24% and dissimi-
larity index 29%, chart 8) and they are 
considerably lower than the respective 
values for the measures of size in 
chart 7. When contagion is measured 
by the value of unsettled payments, 
network indicators are clearly domi-
nated by the traditional measures of 
size. However, the grouping of conta-
gious defaults according to the three 
most active bank accounts and the most 

active transfer account are also appar-
ent in charts 7 and 8. Comparing the 
results for the two measures of conta-
gion, number of banks with unsettled 
payments (charts 5 and 6) versus value 
of unsettled payments (charts 7 and 8), 
reveals that contagion under the latter 
measure is much harder to explain by 
the more traditional variables (value 
and volume of payments) and by net-
work indicators. But, relatively speak-
ing, network indicators do even worse. 
In future work, we will focus on the
investigation of the variations in the 
value of contagion in a multivariate set-
ting, in which we combine control vari-
ables (e.g. beginning-of-day liquidity at 
individual nodes) with network topol-
ogy indicators at the network and at the 
node level. 

Network Indicators (Node Level) per Stricken Account versus Value of Contagious
Defaults per Simulation

Chart 8

Source: OeNB.
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To corroborate our finding that net-
work indicators at the node level do not 
add much value to stability analysis, we 
present the correlations between the 
traditional measures of activity (value 
and volume) and selected network indi-
cators in table 2. The data reveal that 
various indicators of centrality (average 
path length, degree, connectivity, be-
tweenness centrality and dissimilarity 
index) are highly correlated with value 
and volume. 

The analysis suggests that network 
indicators provide little value added in 
the stability analysis of large-value pay-
ment systems with respect to opera-
tional shocks at a participant. In future 
research we will extend the analysis 
from a univariate to a multivariate 
framework. 

6  Summary

The analysis of the network indicators 
of ARTIS shows that the network is 
compact, mostly because almost all ac-
tive nodes are linked to a small number 
of accounts at the center of the network 
(the largest banks and the most active 
transfer accounts). This network struc-
ture is quite stable across days. Com-
paring the ARTIS system with the 
much larger FedWire network yields 

interesting insights into the relationship 
between size and structure of payment 
systems. The distance measures, the 
average degree and the clustering coef-
ficient seem to be independent of size, 
like in other small-world networks. A 
comparison of the network indicators 
of ARTIS with those of the Austrian in-
terbank market reveals that the dis-
tance measures are very similar, while 
the clustering coefficients differ sub-
stantially. The similarity arises because 
the interbank market is likewise domi-
nated by a few large nodes at the center 
of the network. 

We conducted 31,311 simulations 
based on 63 different scenarios for
497 transaction days from November 
16, 2005, to November 16, 2007 (ex-
cluding Austrian holidays). Although 
the scenarios focus only on the banks 
and transfer accounts represented in 
the GSCC on all days, more than a 
quarter of all simulations do not lead to 
contagion (in terms of the number of 
banks with unsettled payments) at all, 
and two-fifths yield one or two conta-
gious defaults. Based on two conserva-
tive thresholds of contagion impact, we 
find that only a very small number of 
accounts are systemically important. If 
we regard only accounts that yield at 

Table 2

Correlations Between Network Indicators (Node Level)

Volume Value Average
path 
length

Degree Connec-
tivity

Cluster-
ing

Be-
tween-
ness
centrality

Dissimi-
larity 
index

%

Volume 100 89 –77 84 83 –57 89 85
Value 100 –70 76 75 –52 77 78
Average path length 100 –96 –97 62 –79 –85
Degree 100 99 –72 85 95
Connectivity 100 –72 85 93
Clustering 100 –56 –78
Betweenness centrality 100 87
Dissimilarity index 100

Source: OeNB.
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least an average of one contagious de-
fault across the sample period as sys-
temically important, we find that no 
more than 28 bank accounts, but al-
most all transfer accounts operated by 
central banks, are systemically rele-
vant. If we define systemic relevance as 
a contagion impact of at least 0.1% of 
the average value of transactions settled 
across days, we find that 17 bank ac-
counts and 7 transfer accounts are sys-
temically relevant. In both cases only 
7% to 12% of all bank accounts in
ARTIS and 2% to 3% of all Austrian 
banks are systemically relevant. The 
simulation results suggest that the
ARTIS system is remarkably stable with 
respect to operational incidents at one 
of its participants. The strong conta-
gion impact of the transfer accounts is 
an interesting feature revealed by the 
simulations and suggests that removing 
transfer accounts in the Single Shared 
Platform of TARGET2 can improve
the system’s resilience compared with 
the old TARGET system. 

The time series of average conta-
gious defaults per day is quite volatile. 
We find that the variation of network 
structure across days does not contrib-
ute much to the explanation of the vari-
ation of contagion across days. At this 
stage of our research, network indica-

tors at the network level seem to be of 
limited use for stability analysis. 

Network indicators at the node level 
can have explanatory power. In the 
simulations some of them are corre-
lated with the contagion impact of an 
operational shock to a node. Their ex-
planatory power is higher when the 
analysis focuses on the contagion mea-
sured by the number of banks with un-
settled payments as opposed to the 
value of unsettled payments. It is ques-
tionable at this stage whether network 
indicators contain much additional in-
formation compared with value and 
volume, which have traditionally been 
the focus of stability analysis in simula-
tion studies of operational risk in large-
value payment systems. Furthermore, 
the large number of available network 
indicators at the node level and the huge 
differences in their explanatory power 
pose the problem of data mining. In fu-
ture research, we plan to explore the 
large data set compiled in the simula-
tions to investigate the explanatory 
power of network indicators at the net-
work and at the node level in a multi-
variate framework, which allows for 
controlling for other explanatory vari-
ables, such as beginning-of-day liquid-
ity at the network and at the node 
level. 
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