
We provide an empirical analysis of the network structure of the Austrian interbank market based on a
unique data set of the Oesterreichische Nationalbank (OeNB). The analysis relies on the idea that
an interbank market can be interpreted as a network where the banks form the nodes and the claims
and liabilities between them define the edges of the network. This approach allows us to apply results
from general network theory, which is widely applied in other scientific disciplines — mainly in physics.
Specifically, we use different measures from this network theory to investigate the empirical network
structure of the Austrian banking system. We focus on the question of how this structure affects the
stability of the network (the banking system) with respect to the elimination of a node in the network
(the default of a single bank). Regarding the network structure, we find that there are very few banks
with many interbank linkages whereas there are many with only a few links. This feature of networks
has been repeatedly found to be conducive to the robustness of the network against the random
breakdown of links (the default of single institutions due to external shocks). In addition, the interbank
network shows a community structure that exactly mirrors the regional and sectoral organization of the
current Austrian banking system. Moreover, the banking network has typical structural features found in
numerous other complex real world networks: a low clustering coefficient and a relatively short average
shortest path length. These empirical findings are in marked contrast to network structures that have
been assumed in the theoretical economic and econo-physics literature.

Introduction
Safeguarding the stability of the finan-
cial system is one of the core tasks of
central banks. They are therefore
mainly concerned with problems of
systemic risk, i.e. the risk of a large-
scale breakdown of financial interme-
diation. Systemic risk is a key issue in
banking and has two main compo-
nents: The exposure of banks to com-
mon risk factors and the danger of
domino effects of insolvencies. These
domino effects play an important role
in the banking system because banks
are linked by a complex system of mu-
tual credit relations. In such a system
the insolvency of one institution can
affect the financial positions of others
and in a chain reaction increase finan-
cial distress in the banking system as a
whole. From an abstract viewpoint,
the system of mutual credit relations
between financial institutions can be
viewed as a network where banks form
the nodes of the network and their in-

terbank relations form financial links
which are the network�s edges. From
a financial stability point of view, it
is interesting to understand how the
structure of this interbank network
affects the financial stability proper-
ties of the banking system as a whole.
This paper takes a first step in this
direction by uncovering the empirical
structure of the Austrian interbank net-
work as far as it can be reconstructed
from the data reported to the Austrian
central bank, the Oesterreichische
Nationalbank (OeNB).

In our analysis we can draw on a
rich set of results from other disci-
plines. Especially the physics com-
munity has largely contributed to the
empirical analysis and to a functional
understanding of the structure of
complex real world networks in gen-
eral (for an overview see Dorogovtsev
and Mendes, 2003). One of the most
important contributions to recent
network theory seems to be the inter-
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pretation of network parameters with
respect to the stability, robustness and
efficiency of an underlying system
(e.g. Albert et al., 2000). Clearly,
these insights are relevant for the
issues of financial stability and the
network structure of mutual credit
relations in the interbank market.

The network of mutual credit rela-
tions between financial institutions is
considered to play a key role in the
risk of contagious defaults. In the the-
oretical economic literature on conta-
gion, some authors (e.g. Allen and
Gale, 2000; Freixas et al., 2000; or
Thurner et al., 2003) suggest network
topologies that may be interesting to
look at. Allen and Gale (2000) sug-
gested studying a complete graph of
mutual liabilities. The properties of a
banking system with this structure
are then compared to properties of
systems with non-complete networks.
In Freixas et al. (2000), a circular
graph is contrasted with a complete
graph. In Thurner et al. (2003), a
much richer set of different network
structures is studied. Yet, surprisingly
little is known about the actual em-
pirical network structure (technically
also referred to as the network topol-
ogy) of mutual credit relations be-
tween financial institutions. To our
best knowledge the network topology
of interbank markets has so far not
been studied empirically.

In this paper we take a first step to
fill this gap by analyzing a unique data
set of the OeNB. Our main finding is
that the network structure of the Aus-
trian interbank market has a power
law in the degree distribution. This
means that there are very few banks
with many interbank linkages whereas
there are many with only a few links.
This feature of networks has been re-
peatedly found to be conducive to the
stability of the network against the

random breakdown of links. In the
present context, this means that —
given the actually observed structure
of interbank claims and liabilities —
the banking system is relatively robust
with respect to domino effects caused
by the breakdown of single credit in-
stitutions which could ultimately lead
to the collapse of the entire financial
system. We furthermore find evi-
dence of other features of the network
— such as low clustering and the short
average length of links between insti-
tutions — that confirm the general
structural features of the interbank
network found in the data. Finally,
another important message of this
work is that the rather large classes
of potential networks can be narrowed
to empirically relevant structures for
the future modeling of interbank
relations.

The Austrian Interbank
Network
The interbank network is character-
ized by the liability (or exposure)
matrix L. The entries Lij are the lia-
bilities bank i has vis-a‘-vis bank j.
We use the convention of writing lia-
bilities in the rows of L. If the matrix
is read column-wise (transposed ma-
trix LT ) we see the claims or inter-
bank assets banks hold with each
other. It must be noted that L is a
square matrix but not necessarily sym-
metric. The diagonal of L is zero, i.e.
no bank self-interaction exists. In the
following we are looking for the bilat-
eral liability matrix L of all (about
N ¼ 900) Austrian banks, the central
bank (OeNB) and an aggregated for-
eign banking sector. Our data consist
of 10 L matrices, each representing
liabilities for quarterly single month
periods between the years 2000 and
2003. To obtain the Austrian inter-
bank network from central bank data
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we draw on two major sources: we
exploit structural features of the
monthly balance sheet returns of Aus-
trian banks and the Major Loans Reg-
ister in combination with an estima-
tion technique.

For historical reasons, the Aus-
trian banking system is organized in
sectors. The large majority of banks
belong to one of seven sectors: savings
banks (S), Raiffeisen credit coopera-
tives (R), Volksbank credit coopera-
tives (VB), joint stock banks (JS), state
mortgage banks (SM), building and
loan associations (BLA), and special
purpose banks (SP). Banks have to
break down their balance sheet re-
ports on claims and liabilities vis-a‘-
vis other banks according to the differ-
ent banking sectors, the central bank
and foreign banks. This practice of
reporting on balance interbank posi-
tions breaks the liability matrix L

down to blocks of sub-matrices for
the individual sectors. The savings
banks and the Volksbank sector are or-
ganized along a two-tier structure
with a sectoral head institution. The
Raiffeisen sector is organized along a
three-tier structure, with a head insti-
tution for every federal province of
Austria. The provincial head institu-
tions are subsumed under a central in-
stitution, Raiffeisenzentralbank (RZB),
which is at the top of the Raiffeisen
structure. Banks with a head institu-
tion have to disclose their positions
vis-a‘-vis the head institution, which
gives additional information on L.
Since many banks in the system hold
interbank liabilities only vis-a‘-vis their
head institutions, it is possible to ex-
actly pin down many entries in the L

matrix. In a next step, this informa-
tion is combined with the data from
theOeNB�sMajor Loans Register.This
register contains all interbank loans
above a threshold of EUR 350,000.

This information provides us with a
set of constraints (inequalities) and
zero restrictions for individual entries
Lij. Up to this point one can obtain
about 90% of the L matrix entries
exactly.

For the rest we employ an estima-
tion routine based on local entropy
maximization, which has already been
used to reconstruct unknown bilateral
interbank exposures on the basis of
aggregate information (Upper and
Worms, 2002; and Blien et al.,1997).
The procedure finds a matrix that ful-
fils all the known constraints and
treats all other parts (unknown entries
in L) as contributing equally to the
known row and column sums. These
sums are known since the total claims
vis-a‘-vis other banks have to be re-
ported to the central bank. The
estimation problem can be set up as
follows: Assume we have a total of
K constraints. The column and row
constraints take the form

XN
j¼1

Lij ¼ bri 8 i

and ð1ÞXN
i¼1

Lij ¼ bcj 8 j

with r denoting row and c denoting
column. Constraints imposed by the
knowledge about particular entries
in Lij are given by

bl � Lij � bu for some i; j: ð2Þ

The aim is to find the matrix L

(among all the matrices fulfilling the
constraints) that has the least dis-
crepancy to some a-priori matrix U

with respect to the (generalized) cross
entropy measure

CðL;UÞ ¼
XN
i¼1

XN
j¼1

Lijln
Lij

Uij

� �
: ð3Þ

U is the matrix which contains all
known exact liability entries. For
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those entries (bank pairs) ij on which
we have no information from central
bank data, we set Uij ¼ 1. We use
the convention that Lij ¼ 0 whenever
Uij ¼ 0 and define 0lnð00Þ to be 0. This
is a standard convex optimization
problem, the necessary optimality
conditions can be solved efficiently
by an algorithm described in Fang et
al. (1997) and Blien et al. (1997).
As a result, we obtain a rather precise
(see below) picture of the interbank
relations at a particular point in time.
Given L we plot the distribution of
its entries in chart 1(b). The distribu-
tion of liabilities follows a power law
for more than three decades with an
exponent of �1.87, which is within a
range well known from wealth- or
firm-size distributions (Solomon and
Levy, 2000; and Axtell, 2001).

Extracting the Network
Topology from the Inter-
bank Data
There are three possible approaches to
describe the structure as a graph. The
first approach is to look at the liability
matrix as a directed graph. The vertices
are all Austrian banks. The central
bank, the OeNB, and the aggregate
foreign banking sector are represented
by a single vertex each. The set of
all initial (starting) vertices is the set
of banks with liabilities in the inter-
bank market; the set of end vertices
is the set of all banks that are claimants
in the interbank market. Therefore,
each bank that has liabilities vis-a‘-vis
other banks in the network is consid-
ered an initial vertex in the directed
liability graph. Each bank for which
this liability constitutes a claim, i.e.
each bank acting as a counterparty,
is considered an end vertex in the
directed liability graph. We call this
representation the liability adjacency
matrix and denote it by Al (l indicating

liability). Al
ij ¼ 1 whenever a connec-

tion starts from row node i and leads
to column node j, and Al

ij ¼ 0 other-
wise. If we take the transpose of Al we
get the interbank asset matrix
Aa ¼ ðAlÞT . A second way to look at
the graph is to ignore directions and
regard any two banks as connected if
they have either a liability or a claim
vis-a‘-vis each other. This representa-
tion results in an undirected graph
whose corresponding adjacency ma-
trix Aij ¼ 1 whenever we observe an
interbank liability or claim. Our third
graph representation is to define an
undirected but weighted adjacency
matrix Aw

ij ¼ Lij þ Lji; which meas-
ures the gross interbank interaction,
i.e. the total volume of liabilities and
assets for each node. The decision on
which representation to use depends
on the questions addressed to the net-
work. For statistical descriptions of
the network structure, the matrices
A;Aa, and Al will be sufficient; to re-
construct the community structure
from a graph, the weighted adjacency
matrix Aw will be the more useful
choice.

Functional Clusters
There exist various ways to find func-
tional clusters within a given network.
Many algorithms take into account lo-
cal information around a given vertex,
such as the number of nearest neigh-
bors shared with other vertices and
the number of paths to other vertices
(see, e.g., Wasserman and Faust,
1994; or Ravasz et al., 2001). Re-
cently a global algorithm was sug-
gested which extends the concept of
vertex betweenness (Freeman, 1977)
to links (Girvan and Newman,
2001). This elegant algorithm outper-
forms most traditional approaches in
terms of misspecifications of vertices
to clusters; however it does not pro-
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(a)

(b)

contract size Lij

Chart 1: The Austrian Interbank Network and Histogram of Contract Size
Note: The banking network of Austria (a). Clusters are grouped (colored) according to regional and
sectoral organization: R sector with its federal sub-structure: yellow RB, orange RSt, light orange
RK, gray RV, dark green RT, black RN, light green RO, light yellow RS. VB sector dark grey, S sector
orange-brown, other pink. Data are from the September 2002 L matrix, which is representative for
all the other matrices. In (b) we show the contract size distribution within this network (histogram of
all entries in L) which follows a power law with exponent �1.87. Data are aggregated from all 10
matrices.
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vide a measure for the differences of
clusters. In Zhou (2003a) an algo-
rithm was introduced which — while
having at least the same performance
rates as Girvan and Newman (2001)
— provides such a measure, the so-
called dissimilarity index. The algo-
rithm is based on a distance definition
presented in Zhou (2003b).

In analyzing our interbank network
we apply the latter algorithm to the

weighted adjacency matrix Aw. As the
only preprocessing step we clip all
entries in Aw above a level of EUR
300 million for numerical reasons,
i.e. Aw

clip ¼ minðAw; 300mÞ. The com-
munity structure obtained in this way
(chart 1a) can be compared with the
actual community structure in the real
world. Chart 2 shows the result for the
community structure obtained from
one representative data set.

The results from other datasets are
practically identical. The algorithm
identifies communities of banks which
are organised along a two- or three-
tier structure, i.e. the R, VB, and S
sectors. For banks which are not
structured in a hierarchical way, such
as banks in the SP, JS, SM, BLA sec-
tors, no strong community structure
is expected. By the algorithm these

banks are grouped together in a clus-
ter called �other�. The Raiffeisen sec-
tor, with its substructure in the federal
provinces, is further grouped into
clusters which are clearly identified
as R banks within one of the eight
federal provinces (B, St, K, V, T, N,
O, S3). In chart 2 these clusters are
marked as, e.g., �RS�, with �R� indi-
cating the Raiffeisen sector and �S�

Chart 2: Dissimilarity Index of Different Banking Groups
Note: Community structure of the Austrian interbank market network from September 2002 data.
The dissimilarity index is a measure of the �differentness� of the clusters.

3 B for Burgenland, St for Styria, K for Carinthia, V for Vorarlberg, T for Tyrol, N for Lower Austria, O for
Upper Austria, S for Salzburg.
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the province of Salzburg. Overall,
there were 31 misspecifications into
wrong clusters within the total
N ¼ 883 banks, which is a misspecifi-
cation rate of 3.5 %. This result dem-
onstrates the quality of the dissimilar-
ity algorithm and — more importantly
— the quality of the entropy approach
to reconstruct matrix L.

Degree Distribution
Like many real world networks, the
degree distribution of the interbank
market follows a power law for all
three representations Al; Aa; and A.
Charts 3 (a) and (b) show the out-de-
gree (liabilities) and in-degree (assets)
distribution of the vertices in the
interbank liability network. Chart 3
(c) shows the degree distribution of
the interbank connection graph A. In
all three cases we find two regions
which can be fitted by a power law.
Accordingly, we fit one regression line
to the small degree distribution and
one to the obvious power tails of the
data using an iteratively re-weighted
least square algorithm. The power
decay exponents �tail to the tails of
the degree distributions are �tailðAlÞ¼
3:11; �tailðAaÞ ¼ 1:73 and �tailðAÞ ¼
2:01. The size of the out-degree expo-
nent is within the range of several

other complex networks, like, e.g.,
the collaboration networks of actors
(3.1; Albert and Baraba«si,2000),sexual
contacts (3.4; Liljeros et al., 2001);
exponents in the range of 2 are, for
example, the Internet (2.1; Albert et
al., 1999) or mathematicians� collabo-
ration networks (2.1; Baraba«si et al.,
2002), and examples for exponents
of about 1.5 are e-mail networks
(Ebel et al., 2002) and co-autorships
(1.2; Newman, 2001). For the left part
of the distribution (small degrees) we
find �smallðAlÞ¼ 0:69; �smallðAaÞ¼ 1:01
and �smallðAÞ¼ 0:62. These exponents
are small compared to other real
world networks. One example are
food webs with a coefficient of 1.0.
(see Montoya and Sole«, 2000). We
have checked that the distribution
for the low degrees is almost entirely
dominated by banks of the R sector.
Typically in the R sector most small
Raiffeisen banks have links to their
federal provincial head institutions
and very few contacts with other
banks; this leads to a strong hierarch-
ical structure, which is clearly visible
in chart 1(a). This hierarchical struc-
ture is perfectly reflected by the small
scaling exponents (Trusina et al.,
2003).
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Clustering Coefficient
To quantify clustering phenomena
within the banking network, we use
the so-called clustering coefficient C

defined by

C ¼ 3� ðnumber of triangles on graphÞ
number of connected triples of vertices

ð4Þ

It provides the probability that two
vertices that are connected to any
given vertex are also connected with
one another. A high clustering coeffi-
cient means that two banks that have
interbank connections with a third
bank have a greater probability to have
interbank connections with one an-
other than any two banks randomly
chosen on the network.The clustering
coefficient is well defined in un-
directed graphs only. We find the clus-
tering coefficient of the connection

network ðAÞ to be C ¼ 0:12� 0:01
(mean and standard deviation over
the 10 data sets), which is relatively
small compared to other networks.
In the context of the interbank mar-
ket, a small C is a reasonable result.
While banks may be interested in
some diversification of interbank
links, keeping a link is also costly. So
if, for instance, two small banks have
a link with their head institution there
is no reason for them to additionally
open a link between themselves.

Average Path Length
We calculate the average path length
for the three networks Al; Aa; A with
the Dijkstra algorithm (Gibbons, 1985)
and find an average path length of
�‘‘ðAlÞ¼ �‘‘ðAaÞ¼ 2:59� 0:02. Note the

(c)

Chart 3: Degree Distribution
Note: Empirical out-degree (a) and in-degree (b) distribution of the interbank liability network. In
(c) the degree distribution of the interbank connection network is shown. All the plots are histograms
of aggregated data from all the 10 datasets.
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possibility that in a directed graph not
all nodes can be reached and we re-
strict our statistics to the giant com-
ponents of the directed graphs. The
average path length in the (undir-
ected) interbank connection network
A is �‘‘ðAÞ¼ 2:26� 0:03. From these
results the Austrian interbank net-
work looks like a very small world
with about three degrees of separa-
tion. This result looks natural in the
light of the community structure de-
scribed earlier. The two- and three-
tier organization with head institu-
tions and sub-institutions apparently
leads to short interbank distances via
the upper tier of the banking system
and thus to a low degree of separation.

Conclusions
Our analysis provides a first picture of
an interbank network by studying a
unique dataset for the Austrian inter-
bank market. Even though the Aus-
trian interbank market is small it is
structurally very similar to the inter-
bank system in many European coun-
tries, including the large economies of
Germany, France and Italy. We show
that the liability (contract) size distri-
bution follows a power law. These re-
sults can be understood as being
driven by the underlying size and
wealth distributions of banks which
show similar power exponents. We
find that the interbank network shows

— like many other realistic networks —
power law dependencies in the degree
distributions. We were able to show
that different scaling exponents relate
to different network structures in dif-
ferent banking sectors within the total
network. The scaling exponents of the
Raiffeisen credit cooperatives (R) are
very low, due to the hierarchical
structure of this sector, while the
other banks have scaling exponents
also found in other complex real
world networks. Regardless of the size
of the scaling exponent, the existence
of a power law is a strong indication of
a stable network with respect to ran-
dom bank defaults or even intentional
attack (Albert et al., 2000). The in-
terbank network shows a low cluster-
ing coefficient, a result that mirrors
the analysis of community structure
which shows a clear network pattern,
where banks would first have links
with their head institutions, whereas
these few head institutions have links
between each other. A consequence
of this structure is that the interbank
network is a small world with a very
low �degree of separation� between
any two nodes in the system. A fur-
ther important message of this paper
is that our results allow excluding
large classes of unrealistic types of
networks for future modeling of inter-
bank relations which have so far been
used in the literature.
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