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How useful are time-varying parameter models 
for forecasting economic growth in CESEE?

Martin Feldkircher, Nico Hauzenberger1

Empirical evidence has shown that a prerequisite for generating reliable macroeconomic fore-
casts is either the inclusion of a large information set or modeling time variation in the models’ 
parameters and volatilities. In this paper we examine these claims in a comparative manner, 
forecasting GDP growth for six CESEE economies. We use Bayesian techniques and evaluate 
the models based on both the accuracy of their point forecasts as well as the degree of uncer-
tainty surrounding these predictions. Our results indicate that forecasts from a fully-fledged 
time-varying parameter model tend to outperform those from its constant parameter competitors. 
Adding more information, e.g. from other countries, by contrast, does not improve forecast 
performance significantly for most of the countries under study. Last, we analyze whether it pays 
to forecast GDP growth indirectly by summing up forecasts of GDP components. This approach 
yields competitive forecasts, yet it preserves an economic interpretation of the underlying drivers 
for the economic growth forecasts, which is of crucial importance from a practitioner’s view. 

JEL classification: C11, C32, C53, E17
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“Those who have knowledge, don’t predict. Those who predict, don’t have knowledge.”
Lao Tzu

Forecasting economic growth for Central, Eastern and Southeastern European 
(CESEE) countries is of key interest to individuals, firms and banks that have a 
stake in these economies. Also, due to the forward-looking element of monetary 
policy, macroeconomic forecasting has always been a core research field for central 
bankers. Today, a great number of forecasting models are applied at central banks 
on a regular basis. They range from large-scale models (e.g. the models used in the 
Banca d’Italia) and dynamic stochastic general equilibrium models (DSGE, e.g. 
used in the Bank of England) to structural or semi-structural time series models, 
such as the OeNB’s FORCEE model to forecast economic growth in CESEE econ-
omies, with the latter yielding reliable forecasts as has been demonstrated in Crespo 
Cuaresma et al. (2009) and Slačík et al. (2014). However, in the aftermath of the 
global financial crisis, most quantitative models used by central banks came in for 
heavy criticisms (Hendry and Muellbauer, 2018). Since then, policymakers have 
been seeking flexible, yet economically consistent, forecasting models. These 
models should be able to adapt quickly to changes in the economic environment, 
which sometimes happen more gradually, sometimes abruptly. The challenge for a 
researcher is that flexibility can be achieved in different ways (Carriero et al., 
2016). One way to ensure the model is capable of adapting quickly is to include a 
rich information set. Given that most CESEE economies use an export-driven 
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growth model, a more complete modeling of the external sector could prove partic-
ularly useful. Another way of introducing flexibility is to use econometrically 
more sophisticated models that allow parameters to drift over time. 

In this paper we examine forecasts derived from a range of Bayesian vector-
autoregressive (BVAR) models for six non-euro area EU Member States from the 
CESEE region: Bulgaria, Croatia, the Czech Republic, Hungary, Poland and Romania. 
BVARs seem to be particularly suited for forecasting GDP growth for CESEE 
economies since the time series available for these economies are rather short 
(Brázdik and Franta, 2017). The models we examine vary in the degree to which 
they can adapt to changes in economic conditions and in the amount of information 
on foreign economic conditions they include. Our main research question is 
whether time-varying parameter models can improve forecast performance over more 
simple, linear-in-parameters models for the CESEE region. Since these economies 
underwent boom-bust cycles and structural breaks during the estimation period, 
time-varying parameter models might prove especially useful for forecasting 
CESEE growth, which so far has not been investigated systematically for the region. 
Following Crespo Cuaresma et al. (2009), we model the components of GDP 
jointly and compute forecasts either directly or by aggregating forecasts of GDP 
components. For the latter we propose two approaches: first, simply summing up 
GDP components’ forecasts accounting for their relative shares in overall GDP and 
second, optimizing the shares/weights of the components based on how well the 
model can predict them. For all models we compute predictive densities to evaluate 
their forecasting performance. By this we ensure that models that yield both an 
accurate point forecast and a small degree of uncertainty surrounding the prediction 
are rewarded. 

Our results are as follows: First we find evidence for forecast improvements 
achieved by the proposed time-varying parameter model over constant parameter 
models and univariate benchmark models. However, the specification of the 
time-varying parameter model is such that time variation in the parameters is kept 
relatively tight. Our results show that setting the respective prior too loose results 
in overfitting and in turn poor forecast performance. Second, including a large 
information set – namely variables from all countries in the region – does not 
improve forecast performance. An exception to this is Hungary, for which this 
“region-wide” model yields the best forecast at both the one-quarter and four-quarters 
forecast horizon. Last, weighted forecasts of GDP components are competitive 
with direct time-series forecasts of GDP growth. This finding is important since it 
shows that not only does the proposed forecast method yield sound predictions but 
it can also be used in an institutional forecasting process, e.g. in a central bank, 
where the focus is not only on the point forecast but also on growth drivers. 

The rest of the paper is structured as follows: The next section reviews the 
literature, and section 3 introduces the data. Section 4 describes the econometric 
framework, and section 5 discusses different ways of forecast aggregation. In 
section 6 we discuss the results, and section 7 concludes the paper. 

1  Review of the literature 
In the aftermath of the global financial crisis, the economic profession started to 
develop new models that should yield more reliable forecasts. The consensus of this 
literature is that forecasting with vector-autoregressive (VAR) models can be improved 
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by exploiting large information sets and accounting for changes in the relationships 
of the macroeconomic variables by modeling time variation in their volatilities 
(Carriero et al., 2016). The first claim – the more information included, the better 
the forecast – has been empirically verified by several studies using different econo-
metric techniques and data sets (see, among others, Bańbura, et al., 2010; Carriero 
et al., 2011; Koop, 2013; Carriero et al., 2015). Also, for CESEE forecasting, it has 
proven useful to include a large information set. For example, Franta et al. (2016) 
show that including a rich set of high-frequency information in a mixed-frequency 
vector autoregression outperforms official CNB inflation forecasts. Other applica-
tions that use large information sets cover the area of nowcasting. Kunovac and 
Špalat (2014) use over 40, and Armeanu et al. (2017) use 80 high-frequency indi-
cators to successfully nowcast Romanian and Croatian GDP, respectively. For an 
excellent review of this literature, consider Riedl and Wörz (2018). 

The second key feature of a useful forecasting model – namely accounting for 
time variation using more sophisticated models – can be technically implemented 
in different ways. In its simplest form, time variation can be captured by allowing 
the volatility of the residual part of the model to vary over time (stochastic volatility). 
Such a model would yield precise inference during times in which volatility is low 
(i.e., the part of variation that is left unexplained by the model), while credible 
intervals are inflated during turbulent times. The bounds surrounding the forecast 
would thus vary over time, which allows gauging the reliability of a current forecast 
at hand – a feature that is absent in a purely linear model. In fact, the literature has 
shown that accounting for time variation in variances significantly improves fore-
casts (Cogley and Sargent, 2005; Clark and Ravazzolo, 2015; Carriero et al., 2016; 
Chan and Eisenstat, 2018). 

In a fully-fledged time-varying parameter model, not only residual variances 
but also the parameters that reflect the economic relationships would be allowed 
to vary over time. Such a model could be particularly useful when dealing with 
macroeconomic data of economies that have undergone structural changes or pro-
nounced boom-bust phases, e.g., CESEE economies. Here, the claim that more 
information and accounting for time-variation improves forecasting should be 
modified. Huber et al. (2018) indicate a trade-off between the size of the informa-
tion set and the flexibility of the model: time-varying parameter models are partic-
ularly useful for small-scale models, where moving coefficients can account for 
missing information, while in a richer data information environment it suffices to 
account for stochastic volatility. In general, the numerosity of parameters to esti-
mate in time-varying parameter models is huge, and these models usually suffer 
from issues related to overfitting. This holds also true for small-scale applications. 
Hence, it is crucial to put some regularization/shrinkage on the coefficients when 
estimating time-varying parameter models (Bitto and Frühwirth-Schnatter, 2018; 
Belmonte et al., 2014; Eisenstat et al., 2016). Can these models then improve fore-
casting? There is a lot of empirical evidence that demonstrates the usefulness of 
time-varying parameter models, albeit most studies use U.S. data (Cogley and 
Sargent, 2005; Primiceri, 2005; D’Agostino et al., 2013; Aastveit et al., 2017). 
For CESEE economies, only Ravnik (2014) examines the usefulness of time-varying 
parameter VAR models. He shows that short-term forecasts for Croatian GDP can 
be significantly improved using a Bayesian time-varying parameter VAR relative to 
simple benchmark models as well as fixed parameter VARs. 
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2  Data

In this section we briefly describe the data we use to forecast GDP growth for 
Bulgaria, Croatia, the Czech Republic, Hungary, Poland and Romania. Following 
Crespo Cuaresma et al. (2009), we collect quarterly data on real GDP (gdp), its 
components (i.e., gross fixed capital formation (inv), private consumption (c), public 
consumption (g), imports (m) and exports (x)), nominal exchange rates vis-à-vis 
the euro (e), consumer prices (π), short-term interest rates (i), wages (wg) and 
private credit (pc). National data are augmented by euro area data on short-term 
interest rates (iEA) and GDP (gdpEA). All data except interest rates are in logarithms, 
seasonally adjusted and transformed to satisfy stationarity by first differencing. 
Note that by first differencing, long-run relationships are not taken into account, 
which could lead to more imprecise forecasts over the longer term. The forecasting 
gains from accounting for cointegration are, however, modest (Carriero et al., 
2015), and time-varying parameter models are typically estimated with stationary 
data. Exchange rates are not included in the models for Croatia and Bulgaria since 
both countries – to a different extent – pursue a fixed exchange rate regime with 
the euro as the anchor currency.

Depending on the country, data are either available for the period from Q1 1995 
to Q3 2017 (Czech Republic, Hungary, Poland and Romania) or from Q1 2000 to 
Q3 2017 (Bulgaria and Croatia).

3  Econometric framework
In this section we describe the setting we use to forecast output growth. For a 
typical country c, we estimate variants of the following VAR model: 

(1)

We jointly model GDP growth, its components and additional key macroeconomic 
variables, such as wage growth, consumer price inflation, short-term interest 
rates, private credit growth and changes in the exchange rate vis-à-vis the euro. 
The exogenous euro area variables are internal projections from the ECB and hence 
do not have to be predicted endogenously within the model. These data are avail-
able over the forecast horizon, assuming exogenous variables are given a priori.2 

2	 More precisely, we use confidential quarterly forecasts of the ECB’s Broad Macroeconomic Projection Exercise 
(BMPE) conducted by Eurosystem staff. The forecasts are available twice a year, in March and September, which 
coincides with the timing of the OeNB’ forecast exercise for the CESEE economies. For this study, rather than using 
forecast vintages, we have used forecasts from September 2018 for the whole estimation and forecast evaluation period. 
This is consistent with the macro data, which also stem from the last available vintage.

(

 
 
 
 
 
 
 
 
 
 𝑔𝑔𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐
𝑔𝑔𝑐𝑐𝑐𝑐
𝑥𝑥𝑐𝑐𝑐𝑐
𝑚𝑚𝑐𝑐𝑐𝑐
𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐
𝜋𝜋𝑐𝑐𝑐𝑐
𝑖𝑖𝑐𝑐𝑐𝑐
𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐
𝑒𝑒𝑐𝑐𝑐𝑐 )

 
 
 
 
 
 
 
 
 
 

=  𝐴𝐴c1,t

(

 
 
 
 
 
 
 
 
 
 𝑔𝑔𝑔𝑔𝑔𝑔𝑐𝑐,𝑡𝑡−1
𝑐𝑐𝑐𝑐,𝑡𝑡−1
𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐,𝑡𝑡−1
𝑔𝑔𝑐𝑐,𝑡𝑡−1
𝑥𝑥𝑐𝑐,𝑡𝑡−1
𝑚𝑚𝑐𝑐,𝑡𝑡−1
𝑤𝑤𝑤𝑤𝑐𝑐,𝑡𝑡−1
𝜋𝜋𝑐𝑐,𝑡𝑡−1
𝑖𝑖𝑐𝑐,𝑡𝑡−1
𝑝𝑝𝑝𝑝𝑐𝑐,𝑡𝑡−1
𝑒𝑒𝑐𝑐,𝑡𝑡−1 )

 
 
 
 
 
 
 
 
 
 

+⋯+ 𝐴𝐴𝑐𝑐𝑐𝑐,𝑡𝑡

(

 
 
 
 
 
 
 
 
 
 𝑔𝑔𝑔𝑔𝑔𝑔𝑐𝑐,𝑡𝑡−𝑝𝑝
𝑐𝑐𝑐𝑐,𝑡𝑡−𝑝𝑝
𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐,𝑡𝑡−𝑝𝑝
𝑔𝑔𝑐𝑐,𝑡𝑡−𝑝𝑝
𝑥𝑥𝑐𝑐,𝑡𝑡−𝑝𝑝
𝑚𝑚𝑐𝑐,𝑡𝑡−𝑝𝑝
𝑤𝑤𝑤𝑤𝑐𝑐,𝑡𝑡−𝑝𝑝
𝜋𝜋𝑐𝑐,𝑡𝑡−𝑝𝑝
𝑖𝑖𝑐𝑐,𝑡𝑡−𝑝𝑝
𝑝𝑝𝑝𝑝𝑐𝑐,𝑡𝑡−𝑝𝑝
𝑒𝑒𝑐𝑐,𝑡𝑡−𝑝𝑝 )

 
 
 
 
 
 
 
 
 
 

+ 𝐵𝐵𝑐𝑐𝑐𝑐

(

 
 
 
 
 
 

𝑔𝑔𝑔𝑔𝑔𝑔𝐸𝐸𝐸𝐸𝐸𝐸
𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸

..

.
𝑔𝑔𝑔𝑔𝑔𝑔𝐸𝐸𝐸𝐸,𝑡𝑡−𝑝𝑝+1
𝑖𝑖𝐸𝐸𝐸𝐸,𝑡𝑡−𝑝𝑝+1

1 )

 
 
 
 
 
 

+ 𝜀𝜀𝑐𝑐𝑐𝑐.      (1)



How useful are time-varying parameter models  
for forecasting economic growth in CESEE?

FOCUS ON EUROPEAN ECONOMIC INTEGRATION Q1/19	�  33

Jointly modeling GDP components and overall GDP can aggravate multicollinearity 
issues that typically plague VAR models. Since we do not cover stock changes and 
statistical discrepancy, our model is not perfectly collinear, though. Remaining 
collinearity will be treated by using shrinkage priors and focusing on density fore-
casts that punish models that suffer from forecast uncertainty caused by overfitting.

More compactly, the model for t=1,...,T can be written in matrix form as follows:

(2)

with yct denoting the M-dimensional vector of endogenous variables, Xct the 
N-dimensional vector of exogenous regressors, Acj,t (j=1,...,p) denote M x M 
potentially time-varying coefficient matrices, Bct a M x N potentially time-varying 
coefficient matrix corresponding to exogenous variables, including an intercept 
term as well. The constant parameter VAR model arises as a special case of 
equation (2) with Acj,t = Acj (j=1,...,p) and Bct = Bc for all t.

For both variants, constant and time-varying parameter models, we assume that 
the errors Ɛct are multivariate Gaussian with zero mean and a variance-covariance 
matrix Σct that can be factorized as  

(3)

Here Lc is an M x M lower triangular matrix with ones on the diagonal and Hct 
denotes an M-dimensional diagonal matrix with time-varying elements ehic,t, for 
i=1,...,M (Cogley and Sargent, 2005; Huber and Feldkircher, 2017). As emphasized 
in the introduction, stochastic volatility is an important feature of a successful fore-
casting model. The time-varying (logarithm of) volatilities, hic,t, are assumed to 
follow an AR-(1) process (Jacquier et al., 1994; Kim et al., 1998; Kastner and 
Frühwirth-Schnatter, 2014). Specifically, 

(4)

with μic denoting the unconditional mean of the log volatility, φic the persistence 
parameter with |φic|<1 and ϵic,t the error term, which is Gaussian with mean zero 
and variance ω2

ic. 

3.1 � Threshold time-varying parameter BVAR with stochastic volatility 
(TTVP-SV)

Using the set-up described above, we examine the predictive performance of three 
multivariate model classes and two univariate benchmark models. To begin with, 
we introduce the most flexible specification, which is the threshold time-varying 
parameter model with stochastic volatility. For that purpose, it proves to be convenient 
to collect all coefficient matrices Acj,t, ( j=1,...,p) and Bct in a matrix Cct and in 
addition define cct = vec(Cct). In the following, the ith element of the full coefficient 
vector cct evolves according to a random walk,

(5)
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Here 𝐿𝐿𝑐𝑐 is an M x M lower triangular matrix with ones on the diagonal, and 𝐻𝐻𝑐𝑐𝑐𝑐 denotes an M-

dimensional diagonal matrix with time-varying elements 𝑒𝑒ℎ𝑖𝑖𝑖𝑖,𝑡𝑡 , for i = 1,⋯ , M (Cogley and 

Sargent, 2005; Huber and Feldkircher, 2017). As emphasized in the introduction, stochastic 

volatility is an important feature of a successful forecasting model. The time-varying (logarithm 

                                                 
2 More precisely, we use confidential quarterly forecasts of the ECB’s Broad Macroeconomic Projection 
Exercise (BMPE) conducted by Eurosystem staff. The forecasts are available twice a year, in March 
and September, which coincides with the timing of the OeNB’ forecast exercise for the CESEE 
economies. For this study, rather than using forecast vintages, we have used forecasts from September 
2018 for the whole estimation and forecast evaluation period. This is consistent with the macro data, 
which also stem from the last available vintage. 
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of) volatilities, ℎ𝑖𝑖𝑖𝑖,𝑡𝑡, are assumed to follow an AR-(1) process (Jacquier et al., 1994; Kim et al., 

1998; Kastner and Frühwirth-Schnatter, 2014). Specifically,  

ℎ𝑖𝑖𝑖𝑖,𝑡𝑡 =  𝜇𝜇𝑖𝑖𝑖𝑖 +  𝜑𝜑𝑖𝑖𝑖𝑖(ℎ𝑖𝑖𝑖𝑖,𝑡𝑡−1 − 𝜇𝜇𝑖𝑖𝑖𝑖) +  𝜖𝜖𝑖𝑖𝑖𝑖,𝑡𝑡,        (4) 

with 𝜇𝜇𝑖𝑖𝑖𝑖 denoting the unconditional mean of the log volatility, 𝜑𝜑𝑖𝑖𝑖𝑖 the persistence parameter 

with |𝜑𝜑𝑖𝑖𝑖𝑖| < 1, and  𝜖𝜖𝑖𝑖𝑖𝑖,𝑡𝑡 the error term, which is Gaussian with mean zero and variance 𝜔𝜔𝑖𝑖𝑖𝑖
2 .  

3.1 Threshold time-varying parameter BVAR with stochastic volatility (TTVP-SV) 

Using the set-up described above, we examine the predictive performance of three multivariate 

model classes and two univariate benchmark models. To begin with, we introduce the most 

flexible specification, which is the threshold time-varying parameter model with stochastic 

volatility. For that purpose, it proves to be convenient to collect all coefficient matrices 

𝐴𝐴𝑐𝑐𝑐𝑐,𝑡𝑡, (𝑗𝑗 = 1,⋯ , 𝑝𝑝), and 𝐵𝐵𝑐𝑐𝑐𝑐 in a matrix 𝐶𝐶𝑐𝑐𝑐𝑐 and in addition define 𝑐𝑐𝑐𝑐𝑐𝑐 = vec(𝐶𝐶𝑐𝑐𝑐𝑐). In the 

following, the 𝑖𝑖th element of the full coefficient vector 𝑐𝑐𝑐𝑐𝑐𝑐 evolves according to a random walk, 

𝑐𝑐𝑖𝑖𝑖𝑖,𝑡𝑡 = 𝑐𝑐𝑖𝑖𝑖𝑖,𝑡𝑡−1 + 𝜂𝜂𝑖𝑖𝑖𝑖,𝑡𝑡.        (5)    

The way the model handles time variation in the coefficients deserves some explanation. 

Huber et al. (2018) propose letting parameters drift depending on the size of previous 

coefficient movements. More precisely, for each coefficient of the model, a threshold 𝛾𝛾𝑖𝑖𝑖𝑖 is 

estimated. In case an estimated coefficient movement at time 𝑡𝑡, gauged by the absolute change 

between period 𝑡𝑡 and 𝑡𝑡 − 1, is sufficiently large (i.e. surpasses the estimated threshold), the 

coefficient is deemed moving. In case the threshold is not surpassed, the coefficient is pushed 

toward the value for period 𝑡𝑡 − 1. Formally, this is achieved by specifying the shocks to 

coefficients as a mixture of two Gaussians: 

 𝜂𝜂𝑖𝑖𝑖𝑖,𝑡𝑡 ~ δ𝑖𝑖𝑖𝑖,𝑡𝑡𝑁𝑁(0, 𝜎𝜎𝑖𝑖𝑖𝑖,1
2 ) + (1 − δ𝑖𝑖𝑖𝑖,𝑡𝑡)𝑁𝑁(0, 𝜎𝜎𝑖𝑖𝑖𝑖,0

2 )        (6) 

with 𝜎𝜎𝑖𝑖𝑖𝑖,1
2 ≫  𝜎𝜎𝑖𝑖𝑖𝑖,0

2 . δ𝑖𝑖 denotes a binary indicator being one, if the absolute change of the 

coefficient is larger than the estimated threshold value 𝛾𝛾𝑖𝑖𝑖𝑖, and zero otherwise (Huber et al., 

2018). The high variance state (𝜎𝜎𝑖𝑖𝑖𝑖,1
2 ) translates into time-variation of coefficients without an 

additional constraint, whereas the low variance state (𝜎𝜎𝑖𝑖𝑖𝑖,0
2 ) implies that the coefficient in 

period 𝑡𝑡 is tightly centered on the coefficient of the previous period 𝑡𝑡 − 1 and thus 

approximately held constant over time. Therefore, a crucial hyperparameter specified by the 

researcher a priori is 𝜎𝜎𝑖𝑖𝑖𝑖,0
2 = ξ, with ξ being a scaling factor that governs the minimum level 

of time variation on coefficient movements.3 We examine five variations of the TTVP-

                                                 
3 See Huber et al. (2018) for more details. 
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3.1 Threshold time-varying parameter BVAR with stochastic volatility (TTVP-SV) 

Using the set-up described above, we examine the predictive performance of three multivariate 

model classes and two univariate benchmark models. To begin with, we introduce the most 

flexible specification, which is the threshold time-varying parameter model with stochastic 

volatility. For that purpose, it proves to be convenient to collect all coefficient matrices 
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following, the 𝑖𝑖th element of the full coefficient vector 𝑐𝑐𝑐𝑐𝑐𝑐 evolves according to a random walk, 

𝑐𝑐𝑖𝑖𝑖𝑖,𝑡𝑡 = 𝑐𝑐𝑖𝑖𝑖𝑖,𝑡𝑡−1 + 𝜂𝜂𝑖𝑖𝑖𝑖,𝑡𝑡.        (5)    

The way the model handles time variation in the coefficients deserves some explanation. 

Huber et al. (2018) propose letting parameters drift depending on the size of previous 

coefficient movements. More precisely, for each coefficient of the model, a threshold 𝛾𝛾𝑖𝑖𝑖𝑖 is 

estimated. In case an estimated coefficient movement at time 𝑡𝑡, gauged by the absolute change 

between period 𝑡𝑡 and 𝑡𝑡 − 1, is sufficiently large (i.e. surpasses the estimated threshold), the 

coefficient is deemed moving. In case the threshold is not surpassed, the coefficient is pushed 

toward the value for period 𝑡𝑡 − 1. Formally, this is achieved by specifying the shocks to 

coefficients as a mixture of two Gaussians: 

 𝜂𝜂𝑖𝑖𝑖𝑖,𝑡𝑡 ~ δ𝑖𝑖𝑖𝑖,𝑡𝑡𝑁𝑁(0, 𝜎𝜎𝑖𝑖𝑖𝑖,1
2 ) + (1 − δ𝑖𝑖𝑖𝑖,𝑡𝑡)𝑁𝑁(0, 𝜎𝜎𝑖𝑖𝑖𝑖,0

2 )        (6) 

with 𝜎𝜎𝑖𝑖𝑖𝑖,1
2 ≫  𝜎𝜎𝑖𝑖𝑖𝑖,0

2 . δ𝑖𝑖 denotes a binary indicator being one, if the absolute change of the 

coefficient is larger than the estimated threshold value 𝛾𝛾𝑖𝑖𝑖𝑖, and zero otherwise (Huber et al., 

2018). The high variance state (𝜎𝜎𝑖𝑖𝑖𝑖,1
2 ) translates into time-variation of coefficients without an 

additional constraint, whereas the low variance state (𝜎𝜎𝑖𝑖𝑖𝑖,0
2 ) implies that the coefficient in 

period 𝑡𝑡 is tightly centered on the coefficient of the previous period 𝑡𝑡 − 1 and thus 

approximately held constant over time. Therefore, a crucial hyperparameter specified by the 

researcher a priori is 𝜎𝜎𝑖𝑖𝑖𝑖,0
2 = ξ, with ξ being a scaling factor that governs the minimum level 

of time variation on coefficient movements.3 We examine five variations of the TTVP-

                                                 
3 See Huber et al. (2018) for more details. 
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The way the model handles time variation in the coefficients deserves some expla-
nation. Huber et al. (2018) propose letting parameters drift depending on the size 
of previous coefficient movements. More precisely, for each coefficient of the 
model, a threshold γic is estimated. In case an estimated coefficient movement at 
time t, gauged by the absolute change between period t and t–1, is sufficiently large 
(i.e. surpasses the estimated threshold), the coefficient is deemed moving. In case 
the threshold is not surpassed, the coefficient is pushed toward the value for period 
t–1. Formally, this is achieved by specifying the shocks to coefficients as a mixture 
of two Gaussians:

(6)

with σ2
ic,1 >>σ2

ic,0. δi denotes a binary indicator being one if the absolute change of the 
coefficient is larger than the estimated threshold value γic, and zero otherwise 
(Huber et al., 2018). The high variance state (σ2

ic,1) translates into time-variation of 
coefficients without an additional constraint, whereas the low variance state (σ2

ic,0) 
implies that the coefficient in period t is tightly centered on the coefficient of the 
previous period t–1 and thus approximately held constant over time. Therefore, a 
crucial hyperparameter specified by the researcher a priori is σ2

ic,0 = ξ, with ξ being 
a scaling factor that governs the minimum level of time variation on coefficient 
movements.3 We examine five variations of the TTVP-SV model, ranging 
from a very loose prior (TTVP-SV ξ=1e-04) to a very tight prior (TTVP-SV 
ξ=1e-08). 

3.2  Constant parameter BVAR

Next, we consider constant parameter Bayesian VAR models with stochastic volatility 
that allow handling large information sets (see, for example, Bánbura et al., 2010; 
Carriero et al., 2011; Koop, 2013; Carriero et al., 2015). The specifications we 
examine cover the well-known Minnesota prior put forth by Doan et al. (1984) 
and Litterman (1986). We include two versions, one with stochastic volatility 
(Minnesota-SV) and one assuming homoscedastic variances (Minnesota). As a 
workhorse of central banks’ forecasters, the Minnesota prior assumes a random 
walk a priori for log-transformed time series and a white noise process for 
log-differenced endogenous variables. In a classic deterministic fashion, shrinkage 
is introduced by downweighting more distant lags and lags of other endogenous 
variables more heavily, compared to own lags. In particular, the first own lags are 
expected to be essential drivers of a persistent economic time series. We also use 
a prior that is particularly useful for handling large data sets, namely the normal 
gamma (NG-SV) generalized to the VAR case by Huber and Feldkircher (2017).4 
This prior belongs to the family of global-local shrinkage priors and proves partic-
ularly useful when pushing coefficients strongly toward zero, which is necessary to 
handle large-scale models. The advantage of the normal-gamma prior arises since 
the prior distribution is characterized by heavier tails, which ensures that coeffi-
cients are allowed to be non-zero when supported by the data, although the overall 
degree of shrinkage is high (Griffin and Brown, 2010). 

3	 See Huber et al. (2018) for more details.
4	 For the TTVP-SV, model variable selection is addressed by using a normal-gamma prior on the initial state of 

coefficients at t = 0. 
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3.1 Threshold time-varying parameter BVAR with stochastic volatility (TTVP-SV) 

Using the set-up described above, we examine the predictive performance of three multivariate 

model classes and two univariate benchmark models. To begin with, we introduce the most 

flexible specification, which is the threshold time-varying parameter model with stochastic 

volatility. For that purpose, it proves to be convenient to collect all coefficient matrices 

𝐴𝐴𝑐𝑐𝑐𝑐,𝑡𝑡, (𝑗𝑗 = 1,⋯ , 𝑝𝑝), and 𝐵𝐵𝑐𝑐𝑐𝑐 in a matrix 𝐶𝐶𝑐𝑐𝑐𝑐 and in addition define 𝑐𝑐𝑐𝑐𝑐𝑐 = vec(𝐶𝐶𝑐𝑐𝑐𝑐). In the 

following, the 𝑖𝑖th element of the full coefficient vector 𝑐𝑐𝑐𝑐𝑐𝑐 evolves according to a random walk, 
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The way the model handles time variation in the coefficients deserves some explanation. 

Huber et al. (2018) propose letting parameters drift depending on the size of previous 

coefficient movements. More precisely, for each coefficient of the model, a threshold 𝛾𝛾𝑖𝑖𝑖𝑖 is 

estimated. In case an estimated coefficient movement at time 𝑡𝑡, gauged by the absolute change 

between period 𝑡𝑡 and 𝑡𝑡 − 1, is sufficiently large (i.e. surpasses the estimated threshold), the 

coefficient is deemed moving. In case the threshold is not surpassed, the coefficient is pushed 

toward the value for period 𝑡𝑡 − 1. Formally, this is achieved by specifying the shocks to 

coefficients as a mixture of two Gaussians: 
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with 𝜎𝜎𝑖𝑖𝑖𝑖,1
2 ≫  𝜎𝜎𝑖𝑖𝑖𝑖,0
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2 ) translates into time-variation of coefficients without an 
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2 ) implies that the coefficient in 

period 𝑡𝑡 is tightly centered on the coefficient of the previous period 𝑡𝑡 − 1 and thus 

approximately held constant over time. Therefore, a crucial hyperparameter specified by the 

researcher a priori is 𝜎𝜎𝑖𝑖𝑖𝑖,0
2 = ξ, with ξ being a scaling factor that governs the minimum level 

of time variation on coefficient movements.3 We examine five variations of the TTVP-

                                                 
3 See Huber et al. (2018) for more details. 
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3.2.1  Multi-country BVAR 

Last, we modify equation (1) by stacking all country-specific VARs to yield a constant 
parameter multi-country model with stochastic volatility. This “regional” set-up 
constitutes a (very) large-scale VAR model and is estimated in order to investigate 
whether modeling cross-country spillovers pays off. Here we opt for estimating all 
countries jointly, which is in contrast to other multi-country models, such as global VARs 
(see, for example, Crespo Cuaresma et al., 2016). These estimate separate country 
models, which are linked in a second step by a measure of economic connectivity, 
such as the extent of bilateral trade. Estimating all countries jointly assesses 
cross-country dependencies empirically without the help of further assumptions/
measures of connectivity. Since the model constitutes a large VAR, we opt for the 
normal-gamma prior with a specification that implies a high degree of shrinkage 
(Multi-NG-SV). 

3.3  Univariate competitors 

The set of competing models is completed by two univariate models: an autore-
gressive model of order 1 (AR1-SV) and a random walk (RW-SV). Moreover, the 
AR1-SV model is linear in parameters. In order to obtain legitimate benchmark 
models, we also allow for stochastic volatility, since this feature commonly yields 
large gains for density forecasts. The prior distribution for the autoregressive 
coefficient is weakly informative. For both univariate specifications we also impose 
time-varying variances. That is, the logarithm of volatilities is defined as AR-(1) 
process as in equation (4).5 
For all models we use Bayesian estimation methods. We employ a Markov chain 
Monte Carlo (MCMC) algorithm for all proposed models enabling inference of the joint 
posterior distribution. We use 5,000 draws for obtaining the predictive densities after 
a burn-in phase of 3,000 draws. For the estimation of time-varying volatilities, we 
exploit the R package stochvol (Kastner, 2016).

4  Forecast aggregation 
Once we have found a promising forecasting model, the question arises how to 
conduct the forecast. In theory, given the forecasting model fits the data well, 
aggregating forecasts from sub-components should boost forecast performance. In 
a recent contribution and in the context of inflation forecasts, Bermingham and 
D’Agostino (2014) indeed find that aggregating forecasts from CPI subcomponents 
can improve forecast performance. In practice, there is a range of pitfalls for fore-
cast aggregation of output or inflation, though, since the predictive accuracy depends 
on two (potentially countervailing) effects, namely the predictive accuracy of all 
components and the cancel-out effects of components’ forecast errors. Moreover, 
Lütkepohl (2011a) and Lütkepohl (2011b) highlight potential problems when aggre-
gating time series with time-varying weights. It is therefore not surprising that 
some studies such as Hubrich (2005), Hendry and Hubrich (2006) and Hendry and 
Hubrich (2011) point to mixed evidence regarding the superiority of forecast 
aggregation over using direct forecasts.

In the following, we use two approaches to yield GDP growth forecasts from 
subcomponents. The first one is a simple weighted aggregation of GDP components’ 

5	 For further details on prior specifications, see the appendix.
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forecasts, where the weights correspond to realized components’ shares in overall 
GDP. For the second approach, weights are optimized based on their historical 
forecast performance (Geweke and Amisano, 2011). 

We first focus on simple aggregation based on realized GDP shares. Here the 
h-step ahead forecast conditional on information in period t can be decomposed as 
follows:

(7)

with wt+h = (wC,t+h, wI,t+h, wG,t+h, wX,t+h, – wM,t+h) being the vector of weights 
assigned to the components vector Zt+h|t = (ct+h|t , it+h|t, gt+h|t, xt+h|t, mt+h|t )́ . ϑt+h 
accounts for inventory investments and statistical discrepancies (see, for example, 
Marcellino et al., 2003; Ravazzolo and Vahey, 2014). We treat ϑt+h as an unfore-
castable white noise process, centered on zero. 
The simple “bottom-up” approach boils down to weighting each component’s fore-
cast by its share in overall output in the current period t. That is,

(8)

where upper-case letters denote the corresponding levels of the variables and  
GDPt = Ct + It + Gt + Xt – Mt. In this case, we keep the corresponding weights fixed 
over the h-step ahead periods to the value of period t, which is assumed to be 
known. Note that this approach yields an economically consistent forecast, in the 
sense that GDP components’ realized contributions sum up to overall growth. 
However, as noted by Lütkepohl (2011a) and Brüggemann and Lütkepohl (2013), 
actual figures of output and components may not be available contemporaneously 
and are, more generally, subject to revisions.

As a second approach to forecast aggregation we propose considering components’ 
forecasts as a portfolio of predictions, which must be optimally weighted with 
respect to a loss function (Timmermann, 2006; Geweke and Amisano, 2011; 
Ravazzolo and Vahey, 2014). Geweke and Amisano (2011) provide a framework 
that maximizes the historical forecast performance to yield optimized weights. 
These weights are then used to sum up the predictive densities of the GDP compo-
nents’ forecasts. In other words, this procedure ensures that inaccurate forecasts 
of components are down-weighted and those that can be predicted more successfully 
are up-weighted. Berg and Henzel (2015) successfully apply these methods for a set 
with different models when forecasting euro area output and inflation. Ravazzolo and 
Vahey (2014) combine forecasts of disaggregate time series to forecast U.S. personal 
consumption expenditures. 

Here, we follow Geweke and Amisano (2011) and evaluate the historical log 
predictive score of aggregate output growth obtained via combining expendi-
ture-side forecasts. That is, we maximize forecast weights for the components 
based on their respective historical performance, which is evaluated for the com-
bined GDP growth forecast. This is in contrast to Geweke and Amisano (2011), 
who choose weights maximizing historical performance for each component.6

6	 The difference to the approach of Geweke and Amisano (2011) is that we do not combine forecasts of different 
models for a single quantity of interest but combine forecasts of components for an aggregate (see, for example, 
Timmermann, 2006; Ravazzolo and Vahey, 2014).

 Restrictive, public after publication 

Page 10 of 22 

weights are optimized based on their historical forecast performance (Geweke and Amisano, 

2011).  

We first focus on simple aggregation based on realized GDP shares. Here the h-step ahead 

forecast conditional on information in period 𝑡𝑡 can be decomposed as follows,  

𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡+ℎ|𝑡𝑡 = 𝑤𝑤𝑡𝑡+ℎ𝑍𝑍𝑡𝑡+ℎ|𝑡𝑡+ 𝜗𝜗𝑡𝑡+ℎ,        (7) 

with 𝑤𝑤𝑡𝑡+ℎ = (𝑤𝑤𝐶𝐶,𝑡𝑡+ℎ, 𝑤𝑤𝐼𝐼,𝑡𝑡+ℎ, 𝑤𝑤𝐺𝐺,𝑡𝑡+ℎ, 𝑤𝑤𝑋𝑋,𝑡𝑡+ℎ, −𝑤𝑤𝑀𝑀,𝑡𝑡+ℎ) being the vector of weights assigned to 

the components vector 𝑍𝑍𝑡𝑡+ℎ|𝑡𝑡 = (𝑐𝑐𝑡𝑡+ℎ|𝑡𝑡 , 𝑖𝑖𝑡𝑡+ℎ|𝑡𝑡, 𝑔𝑔𝑡𝑡+ℎ|𝑡𝑡, 𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡, 𝑚𝑚𝑡𝑡+ℎ|𝑡𝑡)′. 𝜗𝜗𝑡𝑡+ℎ accounts for 

inventory investments and statistical discrepancies (see, for example, Marcellino et al., 2003; 

Ravazzolo and Vahey, 2014). We treat 𝜗𝜗𝑡𝑡+ℎ as an unforecastable white noise process, centered 

on zero.  

The simple “bottom-up” approach boils down to weighting each component’s forecast by its 

share in overall output in the current period t. That is, 

𝑤𝑤𝑧𝑧,𝑡𝑡+ℎ = 𝑧𝑧𝑡𝑡
𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡

       𝑓𝑓𝑓𝑓𝑓𝑓 z𝑡𝑡 = {𝐶𝐶𝑡𝑡, 𝐼𝐼𝑡𝑡,  𝐺𝐺𝑡𝑡, 𝑋𝑋𝑡𝑡,𝑀𝑀𝑡𝑡}        (8) 

where upper-case letters denote the corresponding levels of the variables and  

𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡 =  𝐶𝐶𝑡𝑡 +  𝐼𝐼𝑡𝑡 +  𝐺𝐺𝑡𝑡 +  𝑋𝑋𝑡𝑡 − 𝑀𝑀𝑡𝑡. In this case, we keep the corresponding weights fixed over 

the h-step ahead periods to the value of period 𝑡𝑡, which is assumed to be known. Note that this 

approach yields an economically consistent forecast, in the sense that GDP components’ 

realized contributions sum up to overall growth. However, as noted by Lütkepohl (2011a) and 

Brüggemann and Lütkepohl (2013), actual figures of output and components may not be 

available contemporaneously and are, more generally, subject to revisions. 

As a second approach to forecast aggregation we propose considering components’ forecasts 

as a portfolio of predictions, which must be optimally weighted with respect to a loss function 

(Timmermann, 2006; Geweke and Amisano, 2011; Ravazzolo and Vahey, 2014). Geweke and 

Amisano (2011) provide a framework that maximizes the historical forecast performance to 

yield optimized weights. These weights are then used to sum up the predictive densities of the 

GDP components’ forecasts. In other words, this procedure ensures that inaccurate forecasts of 

components are down-weighted and those that can be predicted more successfully are up-

weighted. Berg and Henzel (2015) successfully apply these methods for a set with different 

models when forecasting euro area output and inflation. Ravazzolo and Vahey (2014) combine 

forecasts of disaggregate time series to forecast U.S. personal consumption expenditures.  
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weights are optimized based on their historical forecast performance (Geweke and Amisano, 
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Ravazzolo and Vahey, 2014). We treat 𝜗𝜗𝑡𝑡+ℎ as an unforecastable white noise process, centered 

on zero.  

The simple “bottom-up” approach boils down to weighting each component’s forecast by its 

share in overall output in the current period t. That is, 
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where upper-case letters denote the corresponding levels of the variables and  

𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡 =  𝐶𝐶𝑡𝑡 +  𝐼𝐼𝑡𝑡 +  𝐺𝐺𝑡𝑡 +  𝑋𝑋𝑡𝑡 − 𝑀𝑀𝑡𝑡. In this case, we keep the corresponding weights fixed over 

the h-step ahead periods to the value of period 𝑡𝑡, which is assumed to be known. Note that this 

approach yields an economically consistent forecast, in the sense that GDP components’ 

realized contributions sum up to overall growth. However, as noted by Lütkepohl (2011a) and 

Brüggemann and Lütkepohl (2013), actual figures of output and components may not be 

available contemporaneously and are, more generally, subject to revisions. 

As a second approach to forecast aggregation we propose considering components’ forecasts 

as a portfolio of predictions, which must be optimally weighted with respect to a loss function 

(Timmermann, 2006; Geweke and Amisano, 2011; Ravazzolo and Vahey, 2014). Geweke and 

Amisano (2011) provide a framework that maximizes the historical forecast performance to 

yield optimized weights. These weights are then used to sum up the predictive densities of the 

GDP components’ forecasts. In other words, this procedure ensures that inaccurate forecasts of 

components are down-weighted and those that can be predicted more successfully are up-

weighted. Berg and Henzel (2015) successfully apply these methods for a set with different 

models when forecasting euro area output and inflation. Ravazzolo and Vahey (2014) combine 

forecasts of disaggregate time series to forecast U.S. personal consumption expenditures.  
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Therefore, the optimal weights vector is chosen according to

(9)

with Iτ–1 denoting the historical information set containing all parameters and 
latent quantities estimated for this period. The superscript e.p. denotes the ex post 
(realized) value of output growth and T0 indicates the start of the hold-out sample. 
Optimization is carried out over a grid of possible weights, where we define the 
bounds of the grid based on the ex ante (at period t) realized value of a components’ 
GDP share. That is, we restrict the possible optimized weights to a neighborhood 
of the historically realized weights. Note that while simple aggregation ensures that 
the overall GDP growth forecast is consistent in an economic sense, by optimizing 
weights we lose this property but probably yield more accurate forecasts overall. 

5  Results
The merits of the proposed models are evaluated with a pseudo out-of-sample fore-
casting exercise by comparing log predictive likelihood scores (Geweke and 
Amisano, 2010). We also provide a detailed analysis of the components’ point fore-
cast to identify the main sources of forecast errors and potential canceling-out 
effects when combining forecasts. 

For the evaluation of one-step and four-step ahead predictions we keep a hold-
out sample of size H from Q1 2010 to Q4 2017 for all countries, except Hungary. 
For Hungary, we start from Q1 2011 since for the early part of the hold-out sample, 
forecasts of most models showed an explosive behavior.7 

Moreover, we use the first out-of-sample period Q1 2010 (or Q1 2011) for the 
initial optimization of weights. For all models with time-varying parameters and/
or stochastic volatility, coefficient estimates are kept constant at the value corre-
sponding to the last observation in the estimation sample when constructing the 
forecast. 

In the following, we plug in the realized values of the hold-out sample in the 
predictive density for calculating the log predictive likelihood. Hence larger values 
indicate a better forecasting performance. Note that LPS scores have to be inter-
preted relative to a benchmark model, which we choose as a simple random walk 
model with stochastic volatility (RW-SV). Hence a direct comparison of LPS 
scores across countries is not meaningful.

In table 1 we report cumulative “pseudo” log predictive scores over the hold-out 
sample.8 For both the one-step and four-steps ahead forecast horizon, we evaluate 
the predictive performance of the direct forecast for GDP growth (GDP direct), 
the composite forecast (GDP w(t-1)) and the composite forecast using optimized 
weights of the GDP’s components (GDP w(opt.dir)). Predictive densities for the 
aggregate forecasts are evaluated using realized GDP growth. For completeness, 
we evaluate the joint predictive density of output growth and the expenditure 

7	 This might be related to the comparatively strong downturn in economic growth in 2009 in Hungary. 
8	 See, for example, Kastner (2018), showing that the name pseudo arises from the fact that we approximate the pre-

dictive densities with a Gaussian distribution. From a practitioner’s point of view, this strategy makes it easy to 
calculate both the joint predictive likelihood and marginal predictive likelihood for a subset of variables of inter-
est (in this case, output growth and the expenditure components).
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Here, we follow Geweke and Amisano (2011) and evaluate the historical log predictive score 

of aggregate output growth obtained via combining expenditure-side forecasts. That is, we 

maximize forecast weights for the components based on their respective historical performance, 

which is evaluated for the combined GDP growth forecast. This is in contrast to Geweke and 

Amisano (2011), who choose weights maximizing historical performance for each component.6 

Therefore, the optimal weights vector is chosen according to 

𝑤𝑤𝑡𝑡+ℎ
∗ = max

𝑤𝑤𝑡𝑡+ℎ

1
𝑡𝑡 − (𝑇𝑇0 + 1) ∑ 𝑙𝑙𝑙𝑙𝑙𝑙

𝑡𝑡

𝜏𝜏=𝑇𝑇0+1
𝑝𝑝(𝑔𝑔𝑔𝑔𝑔𝑔𝜏𝜏𝑒𝑒.𝑝𝑝.|𝐼𝐼𝜏𝜏−1, 𝑤𝑤𝑡𝑡+ℎ)        (9) 

with 𝐼𝐼𝜏𝜏−1denoting the historical information set containing all parameters and latent quantities 

estimated for this period. The superscript 𝑒𝑒. 𝑝𝑝. denotes the ex post (realized) value of output 

growth and 𝑇𝑇0 indicates the start of the hold-out sample. Optimization is carried out over a 

grid of possible weights, where we define the bounds of the grid based on the ex ante (at period 

𝑡𝑡) realized value of a components’ GDP share. That is, we restrict the possible optimized 

weights to a neighborhood of the historically realized weights. Note that while simple 

aggregation ensures that the overall GDP growth forecast is consistent in an economic sense, 

by optimizing weights we lose this property but probably yield overall more accurate forecasts.  

 
5 Results 
The merits of the proposed models are evaluated with a pseudo out-of-sample forecasting 

exercise by comparing log predictive likelihood scores (Geweke and Amisano, 2010). We also 

provide a detailed analysis of the components’ point forecast to identify the main sources of 

forecast errors and potential canceling-out effects when combining forecasts.  

For the evaluation of one-step and four-step ahead predictions we keep a hold-out sample of 

size H from Q1 2010 to Q4 2017 for all countries, except Hungary. For Hungary, we start from 

Q1 2011 since for the early part of the hold-out sample, forecasts of most models showed an 

explosive behavior.7  

Moreover, we use the first out-of-sample period Q1 2010 (or Q1 2011) for the initial 

optimization of weights. For all models with time-varying parameters and/or stochastic 

                                                 
6 The difference to the approach of Geweke and Amisano (2011) is that we do not combine forecasts of 
different models for a single quantity of interest but combine forecasts of components for an aggregate 
(see, for example, Timmerman, 2006; Ravazzolo and Vahey, 2014). 
7 This might be related to the comparatively strong downturn in economic growth in 2009 in Hungary.  
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components of GDP (joint). This serves as an overall measure of forecast perfor-
mance for the variables of interest.9 The figures for the best performing model in 
each column are in bold. 

First, we want to answer the question whether GDP growth forecasts can be 
improved using a time-varying parameter model. The simplest form to capture 
time variation is by allowing error variances to vary over time, and its importance 
for forecasting has been demonstrated in a range of recent empirical contributions. 
Our results corroborate these findings, which can be seen by the inferior perfor-
mance of the Minnesota prior with homoscedastic variance (Minnesota). Forecasts 
from this model are frequently outperformed even by simple univariate benchmark 
models with stochastic volatility. More interestingly, looking at models that accom-
modate time variation also in drifting parameters, we find variants of the threshold 
model outperforming constant parameter BVARs in Bulgaria, Croatia and mostly 
so in the Czech Republic. This holds true for both forecast horizons and regardless 
of whether the direct or composite forecasts are considered. In the Czech Republic 
and considering four-steps ahead forecasts, a BVAR that is linear in parameters and 
using optimized weights to aggregate the forecast yields a nearly identical perfor-
mance though. For the remaining countries it turns out that the TTVP-SV model 
yields superior composite GDP forecasts for both forecast horizons and regardless 
of how the single component forecasts are aggregated. Constant parameter BVARs, 
however, excel when forecast performance is assessed using the direct GDP growth 
forecast. Also, in these instances, improvements over the TTVP-SV forecasts are 
modest. As a special case, Hungary is the only country where the regional model 
(Multi-NG-SV) shows a competitive forecast performance. Looking at direct GDP 
growth forecasts for the one- and four-steps ahead forecast horizon, this model  
even outperforms its competitors, indicating that cross-country linkages play an 
important role for forecasting Hungarian GDP growth. 

Second, we draw attention to the question whether an aggregation of GDP 
components’ forecasts can improve forecast performance compared to directly 
forecasting the GDP series. For most economies and at the one-step ahead forecast 
horizon, direct forecasts are slightly more accurate in terms of LPS scores. A reason 
for this could be that the predictive uncertainty of the components’ forecasts aggre-
gates when summing up the forecasts. Another reason could be that we do not 
model stock changes implicitly, assuming that their contribution is zero over the 
forecasting horizon. The finding that direct forecasts outperform aggregate fore-
casts is, however, not a general pattern. More specifically, composite forecasts in 
Croatia, the Czech Republic and Poland yield higher LPS scores than direct fore-
casts at the four-steps ahead forecast horizon. Only in Bulgaria do we find evidence 
that direct forecasts excel at both forecast horizons and by a great margin. An 
explanation for this could be the historically high contribution of statistical discrep-
ancy in overall GDP growth, which is not captured by the components. 

Third, our results allow us to examine the usefulness of specifying a regional 
multi-country model that takes into account the degree of economic integration 
among the countries under review. For most of the economies, the foreign sector 
plays a crucial role, and attempts have been made to better model the external sector 

9	 The LPS score of the joint predictive density is typically not identical to summing up the LPS scores of the mar-
ginal distributions of each variable of interest, since the latter would neglect cross-variable dependence.

Table 1

Cumulative log predictive scores

One-step ahead Four-steps ahead

GDP 
direct

GDP 
w(t–1)

GDP w 
(opt. dir.)

Joint GDP 
direct

GDP 
w(t–1)

GDP w 
(opt. dir.)

Joint

BG

TTVP-SV BVAR
ξ=1e-04 137.90 127.33 135.30 708.07 99.30 93.17 98.79 512.99
ξ=1e-05 149.88 118.43 129.06 699.91 109.00 95.38 102.30 512.59
ξ=1e-06 163.65 118.72 129.04 720.21 114.54 97.36 104.49 519.43
ξ=1e-07 158.54 118.60 128.94 715.22 112.52 97.33 103.87 517.40
ξ=1e-08 157.05 118.20 127.91 713.53 110.59 96.75 102.90 514.41

Constant parameter BVAR with SV
Minesota-SV 163.05 112.25 124.69 724.86 111.99 85.98 94.46 531.78
NG-SV 162.09 116.64 126.14 711.48 108.62 92.63 97.17 508.61
Multi-NG-SV 147.90 110.91 122.52 689.87 107.60 84.89 93.40 501.19

Constant parameter BVAR no SV
Minnesota 99.34 75.56 85.02 499.50 78.50 54.91 63.30 369.66

Univariate competitors with SV
AR1-SV 136.78 94.03 105.31 660.71 103.15 64.49 74.35 484.44
RW-SV 137.83 101.51 113.28 668.07 101.26 70.17 80.73 468.01

CZ

TTVP-SV BVAR
ξ=1e-04 129.63 118.64 127.31 732.19 81.80 75.24 81.98 459.89
ξ=1e-05 145.95 133.04 141.76 814.19 100.97 98.98 102.68 587.15
ξ=1e-06 148.49 138.04 147.37 828.05 96.86 108.96 111.64 598.33
ξ=1e-07 150.26 137.90 146.74 830.47 107.20 109.09 111.66 614.77
ξ=1e-08 151.28 138.39 146.14 829.71 110.13 109.06 111.28 618.99

Constant parameter BVAR with SV
Minnesota-SV 146.73 131.21 140.88 831.48 102.49 96.75 103.02 605.86
NG-SV 149.63 135.66 144.57 829.07 107.22 106.83 111.68 601.16
Multi-NG-SV 146.97 121.62 134.33 789.78 100.47 86.15 95.66 543.35

Constant parameter BVAR no SV
Minnesota 103.99 81.89 92.45 559.65 80.43 62.03 70.88 429.88

Univariate competitors with SV
AR1-SV 138.78 92.57 104.03 707.71 104.26 67.39 77.17 523.32
RW-SV 141.13 106.93 119.74 743.91 99.23 74.83 85.61 519.78

HR

TTVP-SV BVAR
ξ=1e-04 129.12 128.99 132.93 727.89 91.1 90.74 94.18 517.57
ξ=1e-05 145.12 136.79 141.83 777.24 106.82 106.01 107.69 600.36
ξ=1e-06 145.04 138.38 141.25 783.45 105.43 107.03 109.25 610.58
ξ=1e-07 143.15 138.72 139.84 780.19 105.82 108.06 109.04 615.62
ξ=1e-08 143.13 138.72 140.53 781.51 107.1 109.41 109.25 620.25

Constant parameter BVAR with SV
Minnesota-SV 142.91 123.5 131.69 772.58 103.7 95.67 99.78 596.95
NG-SV 142.84 131.2 136.82 770.73 106.92 105.39 106.97 594.25
Multi-NG-SV 137.16 124.08 131.23 746.43 99.85 94.39 99.07 549.82

Constant parameter BVAR no SV
Minnesota 96.65 79.58 86.85 507.22 73.94 60.59 66.71 378.22

Univariate competitors with SV
AR1-SV 138.91 109.44 116.62 714.29 103.75 80.03 86.03 526.82
RW-SV 141.54 117.98 125.58 729.11 103.96 85.62 92.67 525.11

Source: Authors’ calculations.

Note: �Log predictive scores, cumulative over the hold-out sample. The left-hand part of the table refers to the one-step ahead forecast horizon, the 
right-hand part of the table refers to the four-steps ahead forecast horizon. “GDP direct” refers to a model’s direct GDP growth forecast, “GDP 
w(t-1)” and “GDP w(opt.dir)” refers to GDP forecasts obtained by aggregating forecasts of GDP components as described in the main text. 
“Joint” refers to LPS of the joint predictive density for the variables of interest, namely GDP growth and growth of its expenditure components. 
The figures that refer to the best model are in bold.



How useful are time-varying parameter models  
for forecasting economic growth in CESEE?

FOCUS ON EUROPEAN ECONOMIC INTEGRATION Q1/19	�  39

components of GDP (joint). This serves as an overall measure of forecast perfor-
mance for the variables of interest.9 The figures for the best performing model in 
each column are in bold. 

First, we want to answer the question whether GDP growth forecasts can be 
improved using a time-varying parameter model. The simplest form to capture 
time variation is by allowing error variances to vary over time, and its importance 
for forecasting has been demonstrated in a range of recent empirical contributions. 
Our results corroborate these findings, which can be seen by the inferior perfor-
mance of the Minnesota prior with homoscedastic variance (Minnesota). Forecasts 
from this model are frequently outperformed even by simple univariate benchmark 
models with stochastic volatility. More interestingly, looking at models that accom-
modate time variation also in drifting parameters, we find variants of the threshold 
model outperforming constant parameter BVARs in Bulgaria, Croatia and mostly 
so in the Czech Republic. This holds true for both forecast horizons and regardless 
of whether the direct or composite forecasts are considered. In the Czech Republic 
and considering four-steps ahead forecasts, a BVAR that is linear in parameters and 
using optimized weights to aggregate the forecast yields a nearly identical perfor-
mance though. For the remaining countries it turns out that the TTVP-SV model 
yields superior composite GDP forecasts for both forecast horizons and regardless 
of how the single component forecasts are aggregated. Constant parameter BVARs, 
however, excel when forecast performance is assessed using the direct GDP growth 
forecast. Also, in these instances, improvements over the TTVP-SV forecasts are 
modest. As a special case, Hungary is the only country where the regional model 
(Multi-NG-SV) shows a competitive forecast performance. Looking at direct GDP 
growth forecasts for the one- and four-steps ahead forecast horizon, this model  
even outperforms its competitors, indicating that cross-country linkages play an 
important role for forecasting Hungarian GDP growth. 

Second, we draw attention to the question whether an aggregation of GDP 
components’ forecasts can improve forecast performance compared to directly 
forecasting the GDP series. For most economies and at the one-step ahead forecast 
horizon, direct forecasts are slightly more accurate in terms of LPS scores. A reason 
for this could be that the predictive uncertainty of the components’ forecasts aggre-
gates when summing up the forecasts. Another reason could be that we do not 
model stock changes implicitly, assuming that their contribution is zero over the 
forecasting horizon. The finding that direct forecasts outperform aggregate fore-
casts is, however, not a general pattern. More specifically, composite forecasts in 
Croatia, the Czech Republic and Poland yield higher LPS scores than direct fore-
casts at the four-steps ahead forecast horizon. Only in Bulgaria do we find evidence 
that direct forecasts excel at both forecast horizons and by a great margin. An 
explanation for this could be the historically high contribution of statistical discrep-
ancy in overall GDP growth, which is not captured by the components. 

Third, our results allow us to examine the usefulness of specifying a regional 
multi-country model that takes into account the degree of economic integration 
among the countries under review. For most of the economies, the foreign sector 
plays a crucial role, and attempts have been made to better model the external sector 

9	 The LPS score of the joint predictive density is typically not identical to summing up the LPS scores of the mar-
ginal distributions of each variable of interest, since the latter would neglect cross-variable dependence.
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ξ=1e-06 148.49 138.04 147.37 828.05 96.86 108.96 111.64 598.33
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ξ=1e-07 143.15 138.72 139.84 780.19 105.82 108.06 109.04 615.62
ξ=1e-08 143.13 138.72 140.53 781.51 107.1 109.41 109.25 620.25

Constant parameter BVAR with SV
Minnesota-SV 142.91 123.5 131.69 772.58 103.7 95.67 99.78 596.95
NG-SV 142.84 131.2 136.82 770.73 106.92 105.39 106.97 594.25
Multi-NG-SV 137.16 124.08 131.23 746.43 99.85 94.39 99.07 549.82

Constant parameter BVAR no SV
Minnesota 96.65 79.58 86.85 507.22 73.94 60.59 66.71 378.22

Univariate competitors with SV
AR1-SV 138.91 109.44 116.62 714.29 103.75 80.03 86.03 526.82
RW-SV 141.54 117.98 125.58 729.11 103.96 85.62 92.67 525.11

Source: Authors’ calculations.

Note: �Log predictive scores, cumulative over the hold-out sample. The left-hand part of the table refers to the one-step ahead forecast horizon, the 
right-hand part of the table refers to the four-steps ahead forecast horizon. “GDP direct” refers to a model’s direct GDP growth forecast, “GDP 
w(t-1)” and “GDP w(opt.dir)” refers to GDP forecasts obtained by aggregating forecasts of GDP components as described in the main text. 
“Joint” refers to LPS of the joint predictive density for the variables of interest, namely GDP growth and growth of its expenditure components. 
The figures that refer to the best model are in bold.
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Table 1 continued

Cumulative log predictive scores

One-step ahead Four-steps ahead

GDP 
direct

GDP 
w(t–1)

GDP w 
(opt. dir.)

Joint GDP 
direct

GDP 
w(t–1)

GDP w 
(opt. dir.)

Joint

HU

TTVP-SV BVAR
ξ=1e-04 107.83 99.67 106.66 598.9 72.7 67.03 73.03 401.76
ξ=1e-05 125.59 109.61 114.47 648.49 87.69 82.56 84.18 457.31
ξ=1e-06 127.29 113.83 120.15 654.51 85.71 84.51 85.17 441.93
ξ=1e-07 121.46 114.66 121.11 645.45 80.13 85.1 84.61 434.1
ξ=1e-08 118.41 115.37 122.19 640.79 78.4 85.63 85.27 437.84

Constant parameter BVAR with SV
Minnesota-SV 122.49 101.16 109.46 654.14 85.42 71.75 78.88 473.48
NG-SV 126.01 107.4 114.46 655.98 87.27 81.92 84.32 457.46
Multi-NG-SV 128.47 100.63 109.01 619.69 89.94 72.13 79.07 458.36

Constant parameter BVAR no SV
Minnesota 87.56 57.7 67.86 465.66 68.14 42.63 51.1 343.42

Univariate competitors with SV
AR1-SV 125.1 89.69 100.68 625.61 83.97 63.62 72.96 426.33
RW-SV 128.26 91.04 101.87 625.49 86.77 62.5 71.76 409.17

PL

TTVP-SV BVAR
ξ=1e-04 129.7 124.9 132.14 708.82 82.65 81.49 86.53 438.45
ξ=1e-05 147.09 132.81 144.88 780.95 108.12 106.65 112.45 551.48
ξ=1e-06 151.05 134.02 145.72 812.38 109.82 112.62 117.35 550.08
ξ=1e-07 150.18 134.26 145.21 811.54 112.56 113.89 120.27 578.83
ξ=1e-08 150.06 134.08 144.23 809.72 112.06 113.84 120.17 582.79

Constant parameter BVAR with SV
Minnesota-SV 152.86 127.87 139.99 823.24 115.63 104.4 111.76 585.71
NG-SV 150.45 132.75 144.77 813.09 110.99 107.07 114.7 567.13
Multi-NG-SV 145.73 128.05 138.35 791.56 107.79 99.87 108.18 553.67

Constant parameter BVAR no SV
Minnesota 105.41 79.57 91.21 548.87 83.35 63.8 73.53 411.62

Univariate competitors with SV
AR1-SV 136.65 102.68 113.38 724.81 104.93 81.64 90.61 535.03
RW-SV 144.97 109.49 121.93 737.84 105.15 77.86 89.35 512.56

RO

TTVP-SV BVAR
ξ=1e-04 124.91 120.46 126.27 652.26 85.93 88.49 92.71 462.16
ξ=1e-05 130.11 123.75 129.03 669.99 97.77 95.72 99.23 501.21
ξ=1e-06 131.27 123.5 126.66 670.27 99.5 94.49 97.88 517.63
ξ=1e-07 129.91 122.93 126.05 670.83 99.18 93.74 96.91 521.9
ξ=1e-08 130.21 122.73 126.12 669.91 100.33 94.36 97.74 522.68

Constant parameter BVAR with SV
Minnesota-SV 133.26 119.06 125.48 672.72 101.71 90.68 96.38 507.61
NG-SV 129 116.45 120.45 661.83 102.07 93.46 96.87 506.31
Multi-NG-SV 127.7 111.81 117.16 646.59 94.73 86.39 90.1 483.95

Constant parameter BVAR no SV
Minnesota 95.78 85.88 90.64 502.68 75.01 63.32 67.77 369.82

Univariate competitors with SV
AR1-SV 127.71 102.93 110.87 611.41 96.44 76.7 84.28 466.65
RW-SV 127.66 101.64 110 606.09 93.15 71.04 78.35 421.23

Source: Authors’ calculations.

Note: �Log predictive scores, cumulative over the hold-out sample. The left-hand part of the table refers to the one-step ahead forecast horizon, the 
right-hand part of the table refers to the four-steps ahead forecast horizon. “GDP direct” refers to a model’s direct GDP growth forecast, “GDP 
w(t-1)” and “GDP w(opt.dir)” refers to GDP forecasts obtained by aggregating forecasts of GDP components as described in the main text. 
“Joint” refers to LPS of the joint predictive density for the variables of interest, namely GDP growth and growth of its expenditure components. 
The figures that refer to the best model are in bold.
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(see e.g. Stoevsky, 2009, for Bulgaria, or Kolasa and Rubaszek, 2018, in the context 
of a DSGE framework). Note that by including euro area variables, the baseline 
models already control for developments in the most important export markets for 
the six economies. Slačík et al. (2014), however, take into account trade and eco-
nomic links among the CESEE countries by including trade-weighted GDP in 
addition to euro area variables and show that this can further improve forecast 
performance. We go beyond the specification proposed in Slačík et al. (2014) by 
modeling all variables from all economies jointly, controling for euro area develop-
ments by including euro area GDP and interest rates as additional exogeneous 
regressors. Looking at the results, we do not find compelling evidence that forecasts 
improve if we directly take into account economic linkages among the countries. 
An exception to this is Hungary, for which a regional specification yields the best 
forecast at both forecast horizons. 

So far, the evaluation of forecasts was based on the overall performance over 
the hold-out sample. It could be argued that certain models/model classes perform 
better during volatile times, while others perform better during normal times. In 
the extreme case, the excellent predictive performance of the TTVP-SV models 
could stem from a few data points such as turning points which models linear in 
parameters are not able to capture appropriately. To examine this in more detail, 
we have examined in a robustness exercise the performance of the different models 
for each time point in the hold-out sample. The results are available from the authors 
upon request. Briefly, we do not find evidence of time-specific swings in perfor-
mance. In other words, the models that had a superior track record over the 
whole hold-out sample tend to perform equally well over the hold-out sample. 
This holds true for both forecast horizons, the joint density of the GDP compo-
nents and the marginal GDP forecasts. 

Summing up, we find that for most economies the TTVP-SV model tends to 
excel at both the one-step and four-steps ahead forecast horizon. Our specification 
of the Minnesota prior, however, turns out to be a tough competitor, and the fore-
cast performance of both model classes is relatively close. Hence it is not surprising 
that from the different specifications of the TTVP-SV model, the one that uses a 
tight prior (ξ=10-8) on coefficient movements tends to do a good job for all countries. 
For some countries, forecasts from multivariate models are competitive only at the 
end of the hold-out sample. These tend to be countries with shorter time series. 
For the remaining economies, the models that perform well do so equally over the 
hold-out sample, not showing any large swings in performance.

5.1  Sources of forecast error

In this section we delve deeper to analyze sources of forecast performance for the 
aggregate GDP growth forecasts. For that purpose, we focus on the TTVP-SV model 
with a tight prior (ξ=10–8) that showed a reasonable performance for all countries. 

To assess forecast performance of the aggregate forecast in more detail, we focus 
on two measures of forecast performance: the average mean forecast error (MFE) 
and the average root mean of weighted square forecast error (RMWSFE). The 
MFE serves to gauge which components are over- or underestimated, indicates 
how much the predictions vary around the realizations and considers already the 
components’ share/weight in total GDP (Júlio and Esperanca, 2012).
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Table 2

Evaluation measures for point estimates

w (t–1) w (opt. dir)

MFE 1Q MFE 4Q RMWSFE 
1Q

RMWSFE 
4Q

wi 1Q wi 4Q MFE 1Q MFE 4Q RMWSFE 
1Q

RMWSFE 
4Q

wi 1Q wi 4Q

BG

GDP composite 0.1024 0.0876 0.3109 0.4780 0.0521 0.0555 0.3308 0.4106
GDP direct –0.0585 –0.0865 0.2476 0.4514 –0.0585 –0.0865 0.2476 0.4514
c 0.0464 0.0819 0.2544 0.4269 64.2 64.1 0.0491 0.0920 0.2691 0.4797 67.9 72
g 0.0057 0.0195 0.0989 0.1249 16 16.1 0.0058 0.0210 0.1005 0.1348 16.3 17.4
inv 0.0285 0.1491 0.1537 0.4205 21.4 21.7 0.0230 0.1104 0.1238 0.3113 17.3 16.1
x 0.1163 0.1918 0.4989 0.6021 58.7 57.5 0.0738 0.1290 0.3164 0.4048 37.2 38.7
m –0.0694 –0.3024 0.6452 0.7861 60.3 59.5 –0.0445 –0.2247 0.4138 0.5841 38.7 44.2
Error / discrepancy –0.0272 –0.0061 0.3292 0.2653 –0.0272 –0.0061 0.3292 0.2653

HR

GDP composite 0.0313 0.0336 0.2073 0.3107 0.0026 –0.0584 0.2080 0.3156
GDP direct 0.0431 0.0517 0.2154 0.3421 0.0431 0.0517 0.2154 0.3421
c 0.0273 0.0206 0.1173 0.2045 57.9 58.1 0.0309 0.0239 0.1326 0.2374 65.5 67.4
g –0.0151 –0.0359 0.0555 0.0692 20.5 20.5 –0.0167 –0.0455 0.0612 0.0879 22.5 26
inv 0.0289 0.0412 0.1396 0.2676 21 20.9 0.0218 0.0368 0.1051 0.2390 15.8 18.7
x 0.0137 0.1069 0.3168 0.3648 42 41 0.0099 0.0939 0.2285 0.3205 30.3 36
m –0.0072 –0.0924 0.2681 0.4755 41.3 40.5 –0.0060 –0.1098 0.2212 0.5652 34.1 48.2
Error / discrepancy –0.0173 –0.0084 0.2024 0.1909 –0.0173 –0.0084 0.2024 0.1909

CZ

GDP composite –0.0137 0.0205 0.2114 0.3520 –0.0302 0.0359 0.1790 0.3546
GDP direct –0.0017 0.0791 0.1791 0.3707 –0.0017 0.0791 0.1791 0.3707
c 0.0033 0.0206 0.0847 0.1532 48.4 48.4 0.0035 0.0202 0.0873 0.1500 49.9 47.4
g 0.0068 0.0263 0.0462 0.1032 19.9 20 0.0058 0.0247 0.0397 0.0970 17.1 18.8
inv 0.0009 0.0256 0.0919 0.3640 26.4 26.4 0.0009 0.0236 0.0910 0.3356 26.1 24.4
x –0.0454 –0.0127 0.3972 0.4242 74.8 73.6 –0.0301 –0.0085 0.2640 0.2861 49.7 49.7
m 0.0756 –0.0002 0.4086 0.5143 69.5 68.5 0.0466 –0.0001 0.2518 0.3024 42.8 40.3
Error / discrepancy –0.0512 –0.0327 0.2400 0.2138 –0.0512 –0.0327 0.2400 0.2138

HU

GDP composite 0.0614 0.0340 0.2614 0.4936 0.1033 0.0548 0.2317 0.4840
GDP direct –0.0182 –0.0253 0.2030 0.5486 –0.0182 –0.0253 0.2030 0.5486
c 0.0055 –0.0079 0.0795 0.2639 50.5 50.5 0.0052 –0.0074 0.0753 0.2447 47.8 46.8
g 0.0162 0.0150 0.0899 0.1612 21.1 21.2 0.0148 0.0143 0.0818 0.1541 19.2 20.3
inv –0.0247 –0.0432 0.2719 0.5043 20.4 20.4 –0.0178 –0.0368 0.1966 0.4297 14.7 17.4
x –0.0487 –0.0684 0.4761 0.7337 89.2 87.9 –0.0353 –0.0746 0.3448 0.7999 64.6 95.8
m 0.0365 0.0806 0.5158 0.9328 81.1 80 0.0208 0.0809 0.2946 0.9363 46.3 80.3
Error / discrepancy 0.0743 0.0581 0.3235 0.3117 0.0743 0.0581 0.3235 0.3117

PL

GDP composite –0.0924 0.0176 0.2893 0.2489 –0.0274 –0.0187 0.2259 0.2282
GDP direct 0.0346 0.1106 0.1837 0.3355 0.0346 0.1106 0.1837 0.3355
c –0.0013 0.0075 0.0358 0.1513 60.5 60.6 –0.0012 0.0080 0.0339 0.1608 57.2 64.4
g 0.0141 0.0300 0.0546 0.0933 18.1 18.2 0.0128 0.0306 0.0496 0.0951 16.5 18.6
inv 0.0021 0.0743 0.1588 0.3633 20.6 20.7 0.0016 0.0506 0.1233 0.2474 16 14.1
x –0.0713 –0.0402 0.2292 0.3092 44.8 43.8 –0.0562 –0.0282 0.1806 0.2171 35.3 30.7
m 0.0731 –0.0061 0.4045 0.4653 44.1 43.3 0.0415 –0.0039 0.2294 0.2989 25 27.8
Error / discrepancy –0.1076 –0.0406 0.2993 0.2140 –0.1076 –0.0406 0.2993 0.2140

RO

GDP composite –0.0546 –0.0816 0.4064 0.6672 –0.0183 –0.1933 0.3604 0.4127
GDP direct –0.0561 –0.0649 0.3265 0.5270 –0.0561 –0.0649 0.3265 0.5270
c 0.0643 0.0843 0.2915 0.5583 63.7 63.2 0.0776 0.0880 0.3515 0.5834 76.8 66
g 0.0183 0.0060 0.1251 0.1363 14.8 15 0.0152 0.0085 0.1038 0.1931 12.3 21.3
inv 0.0032 0.0715 0.3062 0.5432 25.9 26.1 0.0024 0.0679 0.2368 0.5157 20 24.8
x –0.1178 –0.1752 0.3388 0.4890 39.6 38.6 –0.1173 –0.2292 0.3374 0.6398 39.4 50.5
m –0.0257 –0.0213 0.2913 0.5421 44 42.9 –0.0284 –0.0311 0.3215 0.7911 48.5 62.6
Error / discrepancy –0.0064 –0.0505 0.4284 0.3840 –0.0064 –0.0505 0.4284 0.3840

Source: Authors’ calculations.

Note: �Summary measures for TTVP model with ξ=10^(-8). MFE refers to the mean forecast error, RMWSFE to the  root mean of weighted square forecast error as defined in the main 
text  and wi to weights associated to each component. The left-hand part of the table shows composite forecasts calculated using realized components’ weights (w (t-1)), the right-
hand part shows composite forecasts using optimized weights (w (opt.dir)). The line “Error / discrepancy” is calculated as the difference between overall GDP and aggregated GDP.
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We define the forecast error ft+h|h for aggregate output growth and the forecast 
error vector of the components ftz+h|h as 

Following Marcellino et al. (2003) and Júlio and Esperanca (2012), the RMWSFE 
and MFE for composite output growth are given by MFE = H–1ΣtϵH ft+h|t and  
R MSFE =
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5.1 Sources of forecast error 

In this section we delve deeper to analyze sources of forecast performance for the aggregate 

GDP growth forecasts. For that purpose, we focus on the TTVP-SV model with a tight prior 

(𝜉𝜉 = 10−8) that showed a reasonable performance for all countries.  

 

To assess forecast performance of the aggregate forecast in more detail, we focus on two 

measures of forecast performance: the average mean forecast error (MFE) and the average root 

mean of weighted square forecast error (RMWSFE). The MFE serves to gauge which 

components are over- or underestimated, indicates how much the predictions vary around the 

realizations and considers already the components’ share/weight in total GDP (Júlio and 

Esperanca, 2012). 

 

We define the forecast error  𝑓𝑓𝑡𝑡+ℎ|ℎ for aggregate output growth and the forecast error vector of 

the components  𝑓𝑓𝑡𝑡+ℎ|ℎ
𝑧𝑧  as 

𝑓𝑓𝑡𝑡+ℎ|ℎ = (𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡+ℎ|ℎ − 𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡+ℎ|ℎ
𝑒𝑒.𝑝𝑝. )  and 

𝑓𝑓𝑡𝑡+ℎ𝑧𝑧 =

(

  
 
 

𝑐𝑐𝑡𝑡+ℎ|𝑡𝑡 − 𝑐𝑐𝑡𝑡+ℎ
𝑒𝑒.𝑝𝑝.

𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡+ℎ|𝑡𝑡 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡+ℎ
𝑒𝑒.𝑝𝑝.

𝑔𝑔𝑡𝑡+ℎ|𝑡𝑡 − 𝑔𝑔𝑡𝑡+ℎ
𝑒𝑒.𝑝𝑝.

𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡 − 𝑥𝑥𝑡𝑡+ℎ
𝑒𝑒.𝑝𝑝.

−(𝑚𝑚𝑡𝑡+ℎ|𝑡𝑡 − 𝑚𝑚𝑡𝑡+ℎ
𝑒𝑒.𝑝𝑝. ))

  
 
 

, (8) 

Following Marcellino et al. (2003) and Júlio and Esperanca (2012) the RMWSFE and MFE for 

composite output growth are given by 𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐻𝐻−1 ∑ 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡𝑡𝑡 ∈ 𝐻𝐻  and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =

√𝐻𝐻−1 ∑ 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡
2

𝑡𝑡 ∈ 𝐻𝐻  and analogously for the components 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑧𝑧 = 𝑤̅𝑤𝑧𝑧,𝑡𝑡+ℎ 𝐻𝐻−1 ∑ 𝑓𝑓𝑧𝑧,𝑡𝑡+ℎ|𝑡𝑡𝑡𝑡 ∈ 𝐻𝐻  

and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑧𝑧 = 𝑤̅𝑤𝑧𝑧,𝑡𝑡+ℎ√𝐻𝐻−1 ∑ 𝑓𝑓𝑧𝑧,𝑡𝑡+ℎ|𝑡𝑡
2

𝑡𝑡 ∈ 𝐻𝐻  with 𝑤̅𝑤𝑧𝑧,𝑡𝑡+ℎ =  𝐻𝐻−1 ∑ 𝑤𝑤𝑧𝑧,𝑡𝑡+ℎ|𝑡𝑡𝑡𝑡 ∈ 𝐻𝐻 . 

 

In table 2, we summarize forecast errors for the different GDP components.  

[TABLE 2 ABOUT HERE] 

The left-hand part of the table contains results using historical weights and the right-hand part 

optimized weights.  

a nd a na logously  for  t he  component s  
MWFEz=  
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GDP growth forecasts. For that purpose, we focus on the TTVP-SV model with a tight prior 

(𝜉𝜉 = 10−8) that showed a reasonable performance for all countries.  

 

To assess forecast performance of the aggregate forecast in more detail, we focus on two 

measures of forecast performance: the average mean forecast error (MFE) and the average root 

mean of weighted square forecast error (RMWSFE). The MFE serves to gauge which 

components are over- or underestimated, indicates how much the predictions vary around the 

realizations and considers already the components’ share/weight in total GDP (Júlio and 

Esperanca, 2012). 

 

We define the forecast error  𝑓𝑓𝑡𝑡+ℎ|ℎ for aggregate output growth and the forecast error vector of 
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, (8) 

Following Marcellino et al. (2003) and Júlio and Esperanca (2012) the RMWSFE and MFE for 

composite output growth are given by 𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐻𝐻−1 ∑ 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡𝑡𝑡 ∈ 𝐻𝐻  and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =

√𝐻𝐻−1 ∑ 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡
2

𝑡𝑡 ∈ 𝐻𝐻  and analogously for the components 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑧𝑧 = 𝑤̅𝑤𝑧𝑧,𝑡𝑡+ℎ 𝐻𝐻−1 ∑ 𝑓𝑓𝑧𝑧,𝑡𝑡+ℎ|𝑡𝑡𝑡𝑡 ∈ 𝐻𝐻  
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The left-hand part of the table contains results using historical weights and the 
right-hand part optimized weights. 

A few general patterns emerge from the data. First, for Bulgaria and Hungary, 
aggregating forecasts with historical weights leads to an overprediction, while the 
direct forecast tends to underestimate GDP growth for both horizons. The oppo-
site is true for Poland. For Romania, both the direct and aggregate forecasts under-
predict real GDP growth. Second, looking at the predictive accuracy of the com-
ponents, we find that the forecasts of export and import growth are most inaccurate 
for all countries. Both components are driven to a large extent by macroeconomic 
conditions abroad, which are apparently not easily captured within the modelling 
framework. For Romania and Bulgaria, two countries whose growth model is 
strongly underpinned by domestic consumption, private consumption forecasts 
also tend to be relatively inaccurate. These observations hold true for both 
one-quarter and four-quarters ahead forecasts. While short-term predictions for 
investment growth tend to be quite accurate, in the longer term, these predictions  
get more inaccurate for half of the countries. Last, looking at the optimized 
weights, we can see that these mostly follow actual shares of GDP components. 
The relative predictive inaccuracy for export and import growth is mirrored in 
smaller, relative shares of these two components, though. This holds true for most 
economies. 

6  Conclusions
In this paper we forecast CESEE GDP growth using a range of Bayesian vector 
autoregressive time series models that are either suitable to handle large information 
sets or are flexible enough to handle gradual as well as abrupt changes in parameters. 
In accordance with the FORCEE model, the prevalent forecasting model of the 
OeNB for forecasting GDP growth in CESEE economies (Crespo Cuaresma et al., 
2009), we condition on external developments by augmenting the models with 
euro area variables and using external assumptions on their development over the 

 Restrictive, public after publication 

Page 15 of 22 

5.1 Sources of forecast error 

In this section we delve deeper to analyze sources of forecast performance for the aggregate 

GDP growth forecasts. For that purpose, we focus on the TTVP-SV model with a tight prior 

(𝜉𝜉 = 10−8) that showed a reasonable performance for all countries.  

 

To assess forecast performance of the aggregate forecast in more detail, we focus on two 

measures of forecast performance: the average mean forecast error (MFE) and the average root 

mean of weighted square forecast error (RMWSFE). The MFE serves to gauge which 

components are over- or underestimated, indicates how much the predictions vary around the 

realizations and considers already the components’ share/weight in total GDP (Júlio and 

Esperanca, 2012). 

 

We define the forecast error  𝑓𝑓𝑡𝑡+ℎ|ℎ for aggregate output growth and the forecast error vector of 

the components  𝑓𝑓𝑡𝑡+ℎ|ℎ
𝑧𝑧  as 

𝑓𝑓𝑡𝑡+ℎ|ℎ = (𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡+ℎ|ℎ − 𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡+ℎ|ℎ
𝑒𝑒.𝑝𝑝. )  and 

𝑓𝑓𝑡𝑡+ℎ𝑧𝑧 =

(

  
 
 

𝑐𝑐𝑡𝑡+ℎ|𝑡𝑡 − 𝑐𝑐𝑡𝑡+ℎ
𝑒𝑒.𝑝𝑝.

𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡+ℎ|𝑡𝑡 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡+ℎ
𝑒𝑒.𝑝𝑝.

𝑔𝑔𝑡𝑡+ℎ|𝑡𝑡 − 𝑔𝑔𝑡𝑡+ℎ
𝑒𝑒.𝑝𝑝.

𝑥𝑥𝑡𝑡+ℎ|𝑡𝑡 − 𝑥𝑥𝑡𝑡+ℎ
𝑒𝑒.𝑝𝑝.

−(𝑚𝑚𝑡𝑡+ℎ|𝑡𝑡 − 𝑚𝑚𝑡𝑡+ℎ
𝑒𝑒.𝑝𝑝. ))

  
 
 

, (10) 

Following Marcellino et al. (2003) and Júlio and Esperanca (2012) the RMWSFE and MFE for 

composite output growth are given by 𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐻𝐻−1 ∑ 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡𝑡𝑡 ∈ 𝐻𝐻  and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =

√𝐻𝐻−1 ∑ 𝑓𝑓𝑡𝑡+ℎ|𝑡𝑡
2

𝑡𝑡 ∈ 𝐻𝐻  and analogously for the components 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑧𝑧 = 𝑤̅𝑤𝑧𝑧,𝑡𝑡+ℎ 𝐻𝐻−1 ∑ 𝑓𝑓𝑧𝑧,𝑡𝑡+ℎ|𝑡𝑡𝑡𝑡 ∈ 𝐻𝐻  

and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑧𝑧 = 𝑤̅𝑤𝑧𝑧,𝑡𝑡+ℎ√𝐻𝐻−1 ∑ 𝑓𝑓𝑧𝑧,𝑡𝑡+ℎ|𝑡𝑡
2

𝑡𝑡 ∈ 𝐻𝐻  with 𝑤̅𝑤𝑧𝑧,𝑡𝑡+ℎ =  𝐻𝐻−1 ∑ 𝑤𝑤𝑧𝑧,𝑡𝑡+ℎ|𝑡𝑡𝑡𝑡 ∈ 𝐻𝐻 . 

 

In table 2, we summarize forecast errors for the different GDP components.  

[TABLE 2 ABOUT HERE] 

The left-hand part of the table contains results using historical weights and the right-hand part 

optimized weights.  



How useful are time-varying parameter models  
for forecasting economic growth in CESEE?

44	�  OESTERREICHISCHE NATIONALBANK

forecast horizon. Opting for a Bayesian approach, we compute predictive densities 
to assess uncertainty surrounding forecasts in a statistically coherent way.

First and foremost, we ask whether a forecasting framework that can accom-
modate structural changes in the economic environment improves forecast quality. 
Our results show that it is of central importance to allow residual variances to 
change over time – a finding that is in line with the recent literature (see e.g. Clark 
and Ravazzolo, 2015). We then examine the forecasting performance of a 
fully-fledged time-varying parameter model with both residual variances and 
parameters changing over time. Our findings indicate that it is indeed this most 
flexible specification that tends to best forecast CESEE growth. There is one caveat, 
though: the prior that governs parameter time variation has to be set very tight. 
In other words, allowing for a bit of time variation improves forecast performance, 
but allowing for too much leads to overfitting and poor forecasts. This is also 
corroborated by looking at results of constant parameter BVARs that turn out to 
be strong competitors. 

Second, we investigate whether it is better to forecast GDP growth directly or 
to construct forecasts of its components and then sum these component forecasts. 
We propose two ways to aggregate forecasts, one which uses historical (realized) 
shares of GDP components in overall GDP and one where weights are optimized 
based on historical forecast performance. Our results show that direct forecasts 
tend to yield the best forecast performance but not by a great margin. A researcher 
that needs to conduct an economically consistent forecast might thus still success-
fully use the models tested in this study. Looking at forecast accuracy of single 
GDP components, we find that investment growth in the longer term and export 
and import growth seem to be particularly hard to forecast throughout the region. 
This is against the background that the multivariate models we tested already con-
trol for developments in the euro area, the most important trading partner for 
CESEE economies. Estimating a “regional” model for all CESEE economies to-
gether turns out to be no viable option since this model yields – with the exception 
of Hungary – inferior forecasts. 

Our study sets the path for further research relevant for central bank forecasting. 
For example, we did not cover the issue of how to bring expert judgment – infor-
mation that is not contained in the data – into the forecasting process. This could 
be achieved by “tilting” the predictive density forecasts of growth components of 
interest to a future path that matches expectations of an informed country expert. 
Alternatively, it would be possible to combine density forecasts with survey expec-
tations, a framework that has been proposed by Kociecki et al. (2011). Finally, in 
order to improve overall forecast accuracy, a more accurate modeling of export, 
import and investment growth is essential. This could be achieved by a more precise 
account of global economic conditions or by the inclusion of forward-looking 
measures of uncertainty or soft data on the business climate. 
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Appendix
Prior distributions

Since we employ Bayesian estimation methods, we need to impose suitable prior 
distributions on all parameters. As the majority of proposed models feature 
stochastic volatility, we follow Kastner and Frühwirth-Schnatter (2014) for the 
prior specification on parameters of equation (4). For the TTVP-SV model, we use 
an inverse gamma prior for σ2

ic,1,

with θic,0 = θic,1 = 0.01 (Huber et al., 2018).
Moreover, we use shrinkage priors on the coefficients to avoid overfitting issues 
and improve forecasts of medium-scale (time-varying parameter) VAR. In constant 
parameter BVARs we impose either a normal-gamma shrinkage prior as put forward 
by Griffin and Brown (2010) and extended for VAR models by Huber and 
Feldkircher (2017) or a hierarchical Minnesota prior on the VAR coefficients.  
In TTVP-SV models we employ a normal-gamma prior on the time-invariant part 
of the coefficients.10

Following Sims and Zha (1998) and Feldkircher and Huber (2017), we specify 
a fully Bayesian Minnesota prior, integrating out the hyperparameters generally set 
by the researcher. The hierarchical priors already allow a great amount of flexibility, 
avoiding excessive shrinkage. We therefore integrate out three hyperparameters 
controlling the degree of shrinkage of a) own lags of endogenous variables, b) lags 
of other variables and c) the intercept and exogenous variables. When specifying a 
gamma prior on the two hyperparameters of a) and b), we obtain the marginal 
likelihood by specifying a Metropolis Hastings algorithm (Huber and Feldkircher, 
2017). Moreover, when the hierarchical Minnesota prior is used, the elements of 
the lower triangular matrix Lc are centered on a Gaussian prior with relatively 
little information.

Following Huber and Feldkircher (2017), we specify a lag-wise normal-gamma 
prior on the coefficient matrices, imitating the Minnesota prior (Doan et al., 1984; 

10	Note that a model linear in parameters is nested in the TTVP-SV specification, if the model is fully shrunk toward 
a constant parameter model.
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Appendix 
6.1 Prior distributions 

Since we employ Bayesian estimation methods, we need to impose suitable prior distributions 

on all parameters. As the majority of proposed models feature stochastic volatility, we follow 

Kastner and Frühwirth-Schnatter (2014) for the prior specification on parameters of equation 

(4). For the TTVP-SV model, we use an inverse gamma prior for 𝜎𝜎𝑖𝑖𝑖𝑖,1
2 , 

𝜎𝜎𝑖𝑖𝑖𝑖,1
2 ~ 𝐼𝐼𝐼𝐼(𝜃𝜃𝑖𝑖𝑖𝑖,0, 𝜃𝜃𝑖𝑖𝑖𝑖,1), 

  

with 𝜃𝜃𝑖𝑖𝑖𝑖,0 = 𝜃𝜃𝑖𝑖𝑖𝑖,1 = 0.01 (Huber et al., 2018). 

Moreover, we use shrinkage priors on the coefficients to avoid overfitting issues and improve 

forecasts of medium-scale (time-varying parameter) VAR. In constant parameter BVARs we 

impose either a normal-gamma shrinkage prior as put forward by Griffin and Brown (2010) and 

extended for VAR models by Huber and Feldkircher (2016) or a hierarchical Minnesota prior 

on the VAR coefficients. In TTVP-SV models we employ a normal-gamma prior on the time-

invariant part of the coefficients.10 

Following Sims and Zha (1998) and Feldkircher and Huber (2017), we specify a fully Bayesian 

Minnesota prior, integrating out the hyperparameters generally set by the researcher. The 

hierarchical priors already allow a great amount of flexibility, avoiding excessive shrinkage. 

We therefore integrate out three hyperparameters controlling the degree of shrinkage of a) own 

lags of endogenous variables, b) lags of other variables and c) the intercept and exogenous 

variables. When specifying a gamma prior on the two hyperparameters of a) and b), we obtain 

                                                 
10 Note that a model linear in parameters is nested in the TTVP-SV specification, if the model is fully 
shrunk toward a constant parameter model. 
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Litterman, 1986), implying increasing lag orders are shrunk toward zero to a 
higher degree. Additionally, we take advantage of the triangularization algorithms 
to treat the elements of Lc similar to VAR coefficients and thus also place a 
normal-gamma prior on these parameters, but with less shrinkage (Huber and 
Feldkircher, 2017).


