Assessing house prices in Germany: evidence from an estimated stock-flow model using regional data

Florian Kajuth Thomas A. Knetsch Nicolas Pinkwart

Economics Department, Deutsche Bundesbank

OeNB Workshop “Are House Prices Endangering Financial Stability? If so, how Can We Counteract This?”
10 October 2014

The presentation is based on a revised version of our Bundesbank Discussion Paper No 46/2013. The views expressed represent the authors' personal opinions and not necessarily those of the Deutsche Bundesbank or its staff.
Motivation

- Since 2010 relatively strong house price increases in Germany
- Regional heterogeneity
- Which macroeconomic factors help to explain house prices?
- How large is the deviation of house prices from their fundamental value?
- Differentiate between subsets of regions
Benefits of regional data

- Standard valuation indicators based on short sample or limited regional/sectoral coverage

- Signs of coefficients in house price equation based on time-series approaches sometimes hard to interpret

- House prices in €/sqm and several standard macroeconomic variables for 402 districts 2004-2013

- Cross-section variation provides more information than time-series dimension for German data

- Evaluate house price developments in different subsets of regions
Panel model specification

- Estimation equation

\[p_{it} = \beta' x_{it} + \delta' w_{t} + c_{i} + \epsilon_{it} \]

- \(p_{it} \): real house price in district \(i=1,2,\ldots,I \) and period \(t=1,2,\ldots,T \)
- \(x_{it} \): housing stock \((s_{it}) \), income \((y_{it}) \), population aged between 30 and 55 \((a_{it}) \), population density \((d_{it}) \), unemployment rate \((u_{it}) \)
- \(w_{t} \): interest rate \((r_{t}) \), growth expectations \((g_{t}^{e}) \)
- Unobserved district-specific effects \(c_{i} \)

- Logarithmic specification
- Explanatory variables measured in volumes expressed in per-capita terms
Hausman-Taylor estimator

- Instrumental variables random-effects estimator which can account for endogenous regressors

- Use IVs on individual endogenous regressors

- Hausman-Taylor (1981): district-specific means of exogenous regressors as instruments; time-demeaned regressors for endogenous variables

 \[\bar{y}_i, \ldots, s_{it} - \bar{s}_i, \ldots \]

- Hausman-Wu test to determine exogenous regressors
Baseline estimation results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Apartments</th>
<th>Single-family houses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hausman-Wu test statistic</td>
<td>HT</td>
</tr>
<tr>
<td>a_{it}</td>
<td>11.6</td>
<td>-1.31^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td></td>
</tr>
<tr>
<td>y_{it}</td>
<td>-0.6</td>
<td>-1.4</td>
</tr>
<tr>
<td>a_{it}</td>
<td>2.5</td>
<td>2.45^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
<td>(0.09)</td>
</tr>
<tr>
<td>d_{it}</td>
<td>4.1</td>
<td>0.43^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td></td>
</tr>
<tr>
<td>u_{it}</td>
<td>-19.0</td>
<td>-23.6</td>
</tr>
<tr>
<td>r_t</td>
<td>-2.96^{***}</td>
<td>-0.65^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.19)</td>
<td>(0.17)</td>
</tr>
<tr>
<td>g_t^C</td>
<td>10.48^{***}</td>
<td>4.42^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.97)</td>
<td>(0.86)</td>
</tr>
<tr>
<td>constant</td>
<td>5.43***</td>
<td>6.44***</td>
</tr>
<tr>
<td></td>
<td>(0.19)</td>
<td>(0.15)</td>
</tr>
</tbody>
</table>

R^2
- within: 0.50
- between: 0.15
- overall: 0.16
- Obs: 4020

Robust standard errors in parentheses. *, **, *** denotes significance on the 10%, 5%, 1%-level. Instruments: District means of exogenous regressors and demeaned endogenous regressors, except those whose within-correlation with prices differs in sign from their between-correlation.
Aggregate house price misalignment

- Fundamental house price = fitted house price from panel estimation \hat{p}_{it}

- Measure for aggregate house price misalignment

\[
\hat{e}_t = \ln p_t - \ln \hat{p}_t = \sum_{i=1}^{I} \frac{n_{it}}{n_t} \hat{e}_{it} = \sum_{i=1}^{I} \frac{n_{it}}{n_t} (\ln p_{it} - \ln \hat{p}_{it})
\]

- With variance

\[
\text{Var} \{ \hat{e}_t \} = \sum_{i=1}^{I} \left(\frac{n_{it}}{n_t} \right)^2 \text{Var} \{ \hat{e}_{it} \} + 2 \sum_{i=1}^{I} \left(\frac{n_{it}}{n_t} \right)^2 \text{Cov} \{ \hat{e}_{it}, W \hat{e}_{it} \}
\]

- Moran’s I:

\[
\rho_{\hat{e}_t,W\hat{e}_t} = \frac{\text{Cov} \{ \hat{e}_{it}, W \hat{e}_{it} \}}{\text{Var} \{ \hat{e}_{it} \}}
\]
Results: Deviations from fundamental price

Whole country

Baseline estimate
95% confidence band

93 cities

Baseline estimate
95% confidence band

7 big cities

Baseline estimate
95% confidence band
Extended sample period for a subset of cities

- Sample period 2004 – 2013: Residential property broadly undervalued?

- Growth expectations and interest rates without cross-section

- Caveat: Correlations along time dimension get more important
Estimation sample 1996-2013

- **Single-family houses**
 - 93 cities
 - Baseline estimate and 95% confidence band

- **Apartments**
 - 7 big cities
 - Baseline estimate and 95% confidence band

Estimation sample 1996-2013
The role of interest rates

- Quantify the effect of the exceptionally low interest rates (and mortgage rates) on house prices

- Scenario A: Constant interest rates since 2009
Conclusions

- Cross-section variation helps to pin down important drivers of house prices
- Signs of coefficients in line with economic intuition
- For Germany as a whole virtually no overvaluation of residential property
- In the cities sizeable overvaluations of apartments, for single-family house prices modest deviations from fundamentals
- Downward trend in real house prices since the mid-1990s associated with declining long-term growth expectations
- Apartments prices around 4 percentage points higher due to currently exceptionally low level of interest rates.
Thank you for your attention!