Warcast index: regional economic activity in Ukraine during an invasion.

Mihnea Constantinescu¹ Kalle Kappner² Niko Szumilo³

 1 National Bank of Ukraine 2 Humboldt-Universität zu Berlin 3 UCL - University College London

East Jour Fixe - Oesterreichische Nationalbank (OeNB) presentation October 2022

This project

Estimating current economic activity (GDP) in Ukraine by region.

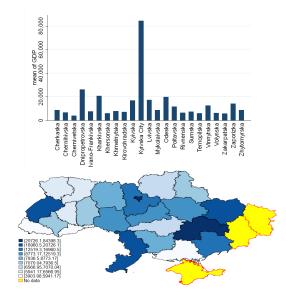
There are challenges in using/interpreting high frequency GDP as it seems to be very volatile.

Useful in a crisis:

- strong signals cut through the normal noise
- decisions need to be made faster in a crisis

Regional vs National.

National effects are aggregated from heterogeneous regional economies.


National policy affects some regions more than others \to aggregate effects depend on regional effects.

If a crisis is regional and an economy is unequal, regional breakdown is important.

A war is inherently a regional crisis where the most affected regions are not random.

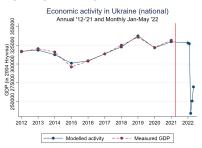
Regional heterogeneity.

- Kyiv City is around 24% of the whole economy.
- Kyiv City and Kyiv oblast are around 30%.
- Focusing on GDP will emphasize Kyiv but other policy objectives (employment, equality, growth) may suggest different focus.

Our approach.

Ukraine historic data challenges:

- Only low frequency of observations (annual)
- Only short time series (8-9 time periods)
- Conventional current data (payments, transactions, employment etc.) is unavailable


Solutions:

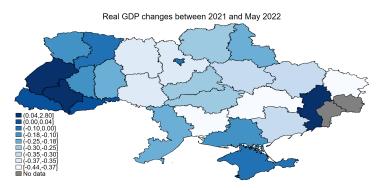
- Model annual GDP (for shorter periods assume that the period's level persists for a year and report the annual GDP)
- Use panel methods (current literature relies on time series)
- Use big data (Nightlights, Twitter and Google Trends)

No new indicators - using we know works and combine it in a new way.

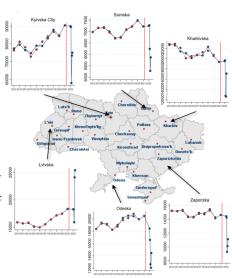
Results overview.

Nigltlihgts + Google + Twitter

- If 2022 is the same as March 2022, economy shrinks by 40%, in April by 31% and May 22%.
- Directly affected regions loose more than others.


Nightlingts only

- Nighlights alone give March 2022 at 43%, in April by 41% and May 36%.
- The index fits the historic data better AND is more optimistic.


Results overview.

- Western regions seem to be doing well.
- Regions affected by violence see their economies shrink.
- Occupied regions appear to have increased levels of activity.

Results overview.

- 1. Sudden and dramatic decrease in activity everywhere
- 2. Activity rebounds quickly in safe areas
- Western economic activity rises to well above pre-war levels
- 4. Activity in occupied regions recovers slowly
- Liberating a region accelerates its economic recovery.

Nowcasting GDP.

The choice is:

- 1. Measure popular in developed countries with strong institutions but expensive and slow. Also, often not possible during a war.
- 2. Model out of sample prediction based on structure of a model:
 - 2.1 Structural theory prediction for a scenario (IMF, WB etc.)
 - 2.2 Time series prediction based on past data
 - 2.3 Prediction using correlated data

All indicators of GDP are biased.

Using Big Data - back-of-envelope economic performance, fast, effective and well-documented.

Finding data.

The GDP nowcasting literature focuses on institutional high-frequency, high-quality datasets of early economic indicators.

- Electronic payments data, sector-level indices, expert surveys
- Flexible models borrowing structure from GDP's definition
- Large scope for evaluation and continuous updating

Mostly not an option for us.

Instead, we focus on a set of feasible GDP correlates emphasized by recent research:

- Twitter (Indaco 2020)
- Google Trends (Woloszko 2021)
- Nightlights (Henderson et al. 2011)

The model.

A simple linear regression (for each region R).

$$\ln GDP_{it} = \alpha + R_i \times \left(\sum (\beta_i PCA_{it}) + \gamma_t \ln Tw_{it} + \theta_i \ln NLI_{it} \right) + \epsilon_{it}$$
(1)

- $\sum (PCA)$ three principal components of Google trends
- \bullet NLI nightlights intensity
- \bullet Tw count of Tweets with pictures

In-sample: annual

Out-of-sample: monthly

Conclusions.

- GDP trackers offer intuitive results: sharp drop and quick partial recovery typical shock response.
- Nightlights don't give a great fit of history and are likely biased downwards.
- Adding Google trends and Twitter improves historic fit and likely reduces the bias.
- Modeling choices affect the quantitative but not qualitative results. Drop in March: 25-45%, drop in May: 15-25%.

Thank you.

Niko Szumilo - UCL - n.szumilo@ucl.ac.uk

Kalle Kappner - Humboldt-Universität - kallekappner@googlemail.com

Mihnea Constantinescu - NBU - mihnea.constantinescu@bank.gov.ua