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8.1  Introduction
The use of the final survey weights described in chapter 7 is sufficient when esti-
mating population parameters. However, calculating the corresponding correct 
variances or standard errors of these estimators requires replicate weights, which 
are described here. HFCS sampling involves a variety of complex features, such as 
stratification, multistage sampling, proportional-to-size sampling in the first stage 
or sampling without replacement in the second stage. In addition, the design 
weights are adjusted for nonresponse and poststratification. Ignoring these features 
in statistical analysis will bias the estimated variances of point estimators. For 
example, if stratification is ignored, the standard errors will be too large, and if 
clusters are ignored, the standard errors will be too small. Furthermore, if design 
weights are ignored, the sampling distributions of the statistics underrepresent the 
observations with a low selection probability and overrepresent those with a high 
selection probability (see Kolenikov, 2010).

A problem that occurs frequently when statistical analysis takes into account a 
complex survey design with all its features is that the mathematical functions of 
the variance estimators are unknown. Therefore, performing a statistical analysis 
requires methods developed especially for the purpose of variance estimation. 
There are two general categories of variance estimation methods: replicate weight 
methods (also called replication or resampling methods) and linearization.1 

Until recently, literature preferred linearization to replication, as it requires 
less computational power. However, an important disadvantage of linearization is 
that data protection regulations prevent the required information necessary for 
linearization from being provided. One way to avoid the problem that certain 
information is not available for privacy reasons is to use replicate weights. Since 
replicate weights consist of many variables and their values are based on informa-
tion not provided to the user of the dataset – e.g. stratum and primary sampling 
unit (PSU) variables – it is not possible for the data user to identify a given respon-
dent (see Stata Library, 2016).

Moreover, the linearization method is unsuitable for estimating the variance of 
nonlinear statistics (medians, quartiles, etc.), as it requires computing derivatives 
of continuous functions; however, quantile functions, for instance, are discontinu-
ous. Replicate weights, by contrast, are well suited for estimating the variance of 
such statistics (see Heeringa et al., 2010).

Given the data protection requirements mentioned above and because the 
HFCS data facilitate in particular the analysis of distributional parameters such as 
medians and quantiles, we decided that the variance estimation method to be 
employed for the HFCS should be based on the use of replicate weights.2 In the 
following section, we describe how replicate weights were constructed for the 
HFCS in Austria.

8 � Construction of replicate weights for	  
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1 	 For a comprehensive overview of variance estimation methods, see Levy and Lemeshow (2008) or Heeringa et al. 
(2010).

2 	 In combination with multiple imputations, variance estimation of nonlinear statistics by means of resampling 
weights is still largely unexplored.
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8.2  Construction of replicate weights 
8.2.1  The replication method
The replication method aims to estimate the variance of an estimated population 
parameter. The idea behind this is to estimate population parameters for individ-
ual subsets (so-called replicates) of the sample observations. The variability of 
these estimated population parameters across all replicates is subsequently calcu-
lated, resulting in the desired variance of the estimated population parameter (see 
Levy and Lemeshow, 2008).

Instead of saving a whole sample for each replicate, it is more practical to vary 
the final survey weights. For example, instead of removing a sample observation to 
construct a certain replicate, it can be given a weight of zero in the replicate. Then 
the weights of the other observations in the same stratum need to be increased to 
ensure that the totals are unbiased for each replicate r (see Kolenikov, 2010). The 
replicate weights wi

(r) for r=1,…,R are published together with the HFCS dataset.
There are different methods to form such replicates. The three major replica-

tion methods used in survey literature are balanced repeated replication, jackknife 
repeated replication and bootstrap replication. Although in most cases, the estimators 
of the variance of all replication methods converge toward one another as the sam-
ple size increases, simulation studies have shown that bootstrap and balanced re-
peated replication are better suited to quantile estimation than jackknife (see Ko-
var et al., 1988). Finally, as balanced repeated replication works only in designs 
with exactly two PSUs per stratum, which is not the case in the HFCS in Austria, 
we decided to use the (rescaling) bootstrap procedure proposed by Rao and Wu (1988) 
and enhanced by Rao et al. (1992). This procedure is also in line with the provi-
sions of the ECB’s Household Finance and Consumption Network.

The bootstrap procedure forms replicates based on repeated with-replacement 
sampling of the PSUs within a stratum. The idea is to mimic the original sampling 
procedure in order to obtain approximations for the sampling distributions of the 
relevant statistics.

8.2.2  Sampling error calculation model

To mimic the original sampling procedure, we create a sampling error calculation 
model that is a simplification (see Heeringa et al., 2010) of the actual complex 
sample design (see chapter 6).

In the HFCS in Austria, one necessary simplification of the sampling error 
calculation model compared with the original sampling procedure is to collapse, 
i.e. merge, strata with one single PSU because the bootstrap procedure requires at 
least two PSUs per stratum. Due to the specific stratification of the HFCS sample 
design, single-PSU strata are quite common in the sample: Only one PSU was 
drawn in 50 out of 185 strata. For the sampling error calculation model, every sin-
gle-PSU stratum is paired with the geographically nearest stratum to form a single 
pseudo stratum, taking into account how many PSUs are in this stratum. Aggre-
gation is carried out with the nearest stratum containing a smaller number of 
PSUs, reducing the frequency of necessary aggregations. Although collapsing the 
strata produces an upward bias in the estimated variance, this bias is kept as 
small as possible by collapsing geographically close strata, which keeps the PSUs 
within one pseudo stratum very homogeneous. In this context it must be pointed 
out that upward biases of standard errors lead to a loss in statistical power. In 
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general, however, this is more accept-
able than downward biases of standard 
errors, which lead to results that are 
too often considered statistically signifi
cant.

Table 17 shows how stratum size (in 
terms of the number of PSUs drawn 
per stratum) changes when the HFCS 
sampling error calculation model is 
used instead of the original HFCS sam-
ple design: When collapsing strata in 
the sampling error calculation model, 
their number decreases from 185 to 135, which means stratification is still very 
high. Moreover, the mean stratum size increases from 3.3 PSUs to 4.6 PSUs per 
stratum.

Another simplification performed in the HFCS sampling error calculation 
model in contrast to the original sample design is to assume that sampling variance 
stems mostly from the first stage of sampling (i.e. the selection of PSUs, and not 
that of households within each PSU). Therefore, two-stage sampling is reduced to 
single-stage sampling where all gross sample households within drawn PSUs are 
selected in the replicate sample.

In addition, all PSUs have the same probability of being selected in the repli-
cate sample. Thus, the sampling error calculation model simplifies sampling by 
making a PSU’s probability of being drawn independent of its size as measured by 
the number of households.

No further simplifications are required by the sampling error calculation 
model. The nonresponse and poststratification weight adjustments are imple-
mented in the same way as in the original weighting procedures (see chapter 7), 
and a finite population correction3 is performed.

8.2.3  Calibration of replicate weights

The algorithm used to construct the HFCS replicate weights comprises the 
following steps:

Step 1: Draw mh PSUs with replacement within each pseudo stratum h.
Step 2: Adjust the final survey weights of the drawn observations to create a 

new set of replicate weights. In particular, apply the same nonresponse and post-
stratification weight adjustments (sections 7.2.3 and 7.2.4) as for the final design 
weights and perform a finite population correction.

Step 3: Repeat steps 1 and 2 R times to obtain r = 1,…,R sets of replicate weights.
In step 1, the number of PSUs mh drawn in each stratum of size nh is set to 

mh= nh –1. This decision is taken often in order to ensure the efficiency of the boot-
strap estimators without violating the natural parameter ranges (see Kolenikov, 
2010).

In step 2, the final survey weights must be adjusted because some PSUs may 
be duplicates and some may not have been drawn at all. As a consequence, each 

Table 17

Comparison of HFCS design strata 
and HFCS pseudo strata

Design strata Pseudo strata

Number of strata 185.0 135.0
Mean size 3.3 4.6
Median size 2.0 2.0
Minimum size 1.0 2.0
Maximum size 37.0 37.0

Source: HFCS Austria 2014, OeNB.

Note: �Stratum size as measured by PSUs drawn per stratum.

3 	 The finite population correction accounts for the reduction in variance that occurs when sampling without 
replacement from a finite population. This type of sampling is used in the sample design of the second stage of the 
HFCS in Austria.
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replicate will be biased with respect to the target population and therefore, to ob-
tain the replicate weights, the design weights must be adjusted in the same way 
they were adjusted when constructing the final survey weights (see chapter 7). In 
addition, a finite population correction is required, as SSUs are sampled without 
replacement in the original HFCS sample design (see footnote 3).4 

Finally, in step 3, the higher the number of replicates R is, the more precise the 
standard error estimates are. We choose R = 1,000, which lies in the upper bound 
of the usual recommendations found in literature (see Kolenikov, 2010).

Table 18 shows some descriptive statistics of a selection of HFCS replicate 
weights. We can see that owing to the homogeneous weighting adjustments, the 
mean and the total sum of replicate weights remain unchanged. Moreover, com-
pared with the final survey weights in the HFCS, the replicate weights have smaller 
minimum values, however none are equal to zero. These values correspond to the 
nonselected PSUs, which, instead of being assigned a weight equal to zero, are 
assigned a small positive weight in the finite population correction. The fact that 
the replicate weights also have larger maximum values than the final survey 
weights can be explained by the weight adjustments that were carried out: As 
some PSUs are not drawn in the replicates, and in order to obtain the same 
estimated population sizes as in the original sample, the weights of the obser
vations in the drawn PSUs must be increased.

8.3  Concluding remarks
We constructed 1,000 sets of replicate weights to enable HFCS data users to 
correctly estimate the standard errors of point estimators in the HFCS. This is 
necessary because the complex features of the HFCS survey design, which com-
prises amongst other things stratification, several stages of cluster sampling and 
weighting adjustments, bias the variance estimators if data users ignore them.

While it is true that correctly calculating the standard errors by using replicate 
weights requires more computational power than analyzing the data without using 

4 	 In the HFCS sample design, PSUs are drawn with replacement, SSUs without. Although the sampling error 
calculation model ignores the second stage, a finite population correction was performed to allow for the fact that 
households are not allowed to appear twice in the sample. Finite population correction reduces the bias of a high-
er variability of replicate weights.

Table 18

Selected HFCS replicate weights

Mean Median Minimum Maximum Total

Final survey weights 1,289 1,207 287 4,360 3,862,526
1st set of replicate weights 1,289 1,040 7 14,374 3,862,526
2nd set of replicate weights 1,289 989 10 11,418 3,862,526
3rd set of replicate weights 1,289 1,023 8 10,852 3,862,526
998th set of replicate weights 1,289 1,104 10 8,369 3,862,526
999th set of replicate weights 1,289 985 6 11,201 3,862,526
1,000th set of replicate weights 1,289 974 7 10,349 3,862,526

Source: HFCS Austria 2014, OeNB.

Note: Statistics refer to successfully interviewed households only.
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replicate weights, in practice it is not necessary to use all 1,000 sets of replicate 
weights for variance estimation. Thus, for example, it is possible to perform 
variance estimations using fewer replicates more quickly but less precisely. The 
number of replicates used depends on the type of estimator and the size of the 
population surveyed. For instance, estimating the means for the total population 
will, as a rule, require fewer replicates than estimating the medians for specific 
population subgroups.

See the HFCS User guide (chapter 9) for an explanation of how to use the 
replicate weights correctly in Stata®.


