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Abstract

The purpose of this paper is to evaluate the performance of VAR
and ARIMA models to forecast Austrian HICP inflation. Additionally,
we investigate whether disaggregate modelling of five subcomponents
of inflation is superior to specifications of headline HICP inflation.
Our modelling procedure is to find adequate VAR and ARIMA speci-
fications that minimise the 12 months out-of-sample forecasting error.
The main findings are twofold. First, VAR models outperform the
ARIMA models in terms of forecasting accuracy over the longer pro-
jection horizon (8 to 12 months ahead). Second, a disaggregated ap-
proach improves forecasting accuracy substantially for ARIMA mod-
els. In case of the VAR approach the superiority of modelling the five
subcomponents instead of just considering headline HICP inflation is
demonstrated only over the longer period (10 to 12 months ahead).

JEL Classification: C53, E31.
Key words: VAR and ARIMA models; inflation forecasting; automatic
modelling; forecasting accuracy.

1The authors would like to thank M. Fluch, F. Rumler, H. Schuberth an anonymous
referee and seminar participants at the Oesterreichische Nationalbank for their comments.
We are grateful to I. Schuch for editorial advice. The usual disclaimer applies.

2Corresponding author. Oesterreichische Nationalbank, Economic Analysis Division,
Otto-Wagner-Platz 3, POB 61, A-1011 Vienna, E-Mail: friedrich.fritzer@oenb.co.at

3Oesterreichische Nationalbank, Otto-Wagner-Platz 3, POB 61, A-1011 Vienna, E-
Mail: gabriel.moser@oenb.co.at

4Simon Fraser University, Department of Economics, 8888 University Drive, Burnaby,
B.C., Canada V5A 1S6, E-Mail: scharler@sfu.ca

1



1 Introduction

One of the most important goals for many central banks is to maintain a
low and stable growth of the price level. Because the instruments of mon-
etary policy show their impact on this goal variable only with a lag it is
necessary to produce accurate and reliable forecasts of the inflation rate in
order to enable the monetary authorities to counteract in a timely manner
inflationary/deflationary pressures that may arise in the future.

The generally accepted measure of the price level is the harmonised con-
sumer price index (HICP), which is composed of a weighted average of five
subindexes that reflect the development of prices of goods produced in cer-
tain sectors of the economy, namely unprocessed food (HICPA), processed
food (HICPB), non-energy industrial goods (HICPC), energy (HICPD) and
services (HICPE).

For a detailed picture of future inflationary or deflationary pressure it is
necessary to generate forecasts of all these subindexes. One question that
will be addressed in this paper lies at the heart of every forecasting exer-
cise: which forecasting method should be used? We compare two classes of
methods to forecast Austrian HICP inflation in terms of their out-of-sample
forecasting accuracy. Univariate (ARIMA) models and multivariate (VAR)
models. The reasons why we limit our consideration to time series meth-
ods are twofold. First, we are mainly interested in the monthly pattern of
HICP inflation with a horizon of up to 12 months. Time series models might
have an advantage over structural econometric models in this respect. Sec-
ond, as reviewed in Fildes and Stekler [8] time series models provide a viable
alternative to large structural models. In some cases time series forecasts
outperform forecasts produced by structural models unless the latter are not
augmented with nonreplicable “add-factors” derived from forecaster judge-
ment. The structure of large models is derived from economic theory and
takes the form of various restrictions on the parameters of the equations to
be estimated. The most widely used restriction is the so-called exclusion re-
striction, which implies that a certain variable does not explain the behaviour
of the variable to be forecasted. These models have lost much of their appeal
due to the famous critique of Sims [21]. Especially the “incredible” exclusion
restrictions have led to a different approach in econometric modelling that
avoids such restrictions. This approach uses so-called vector autoregressive
(VAR) models where all variables in the system are treated endogenously in
the sense that no variable is excluded from explaining other variables.

An alternative to the multiequation VAR approach is to model the fu-
ture development of a variable exclusively by its own past behaviour. These
so-called ARIMA models are based on the theory of stochastic difference
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equations. In the ARIMA modelling process (based on Box and Jenkins [2])
the order of the difference equation is chosen to adequately fit the data.

Since it is difficult to decide a priori which of these two approaches is
more suitable for the particular task of forecasting the Austrian HICP and
its components, we will estimate and forecast all these indices using both
methods and compare them by their respective forecasting performance.

Our model selection strategy is definitely one of “data-mining”. We do
not pay primary attention to estimate the true data generation process and
focus instead on forecasting accuracy. As Hendry and Mizon [13] state “Much
previous work on economic forecasting has considered the properties of fore-
casts when: 1. the data generation process (DGP) is known; 2. the DGP is
constant; and 3. the econometric model coincides with the DGP. These as-
sumptions are strong, and unlikely to be fulfilled in practice”. Hence models
are always simplified representations which are incorrect in many ways.

A second question posed in this paper is to compare the forecast accu-
racy of the aggregated subindices with that of forecasting HICP inflation
directly. Hubrich [15] addresses the same question at the euro area level. A
disaggregated approach in forecasting HICP inflation has the advantage of
possibly yielding more information. On the basis future price development
can be judged more accurately. In addition, disaggregate information al-
lows the central bank to communicate more effectively with the public. The
disadvantage of the disaggregated approach is that some components might
be difficult to forecast due to, for example, strong and changing seasonal
patterns.

The structure of the paper is as follows. Section 2 provides the empiri-
cal evidence on optimal ARIMA and VAR specifications for the purpose of
forecasting HICP inflation and its subcomponents. In section 3 the forecast
performance of the ARIMA versus VAR approach is evaluated. Section 4
draws conclusions. In appendix A we discuss basic principles of ARIMA
and VAR modelling and our approach in choosing variables for the VAR
specifications. In addition comments on forecasting accuracy measures are
included. Appendix B lists the variables tested for inclusion in the VAR
models and appendix C provides the results of the leading indicator analysis.
Appendix D contains figures of VAR and ARIMA forecasts for the HICP and
its subcomponents.

2 Model specification

In this section we present our main decisions regarding the specification of
the two classes of models (VAR and ARIMA) we used to forecast the Aus-
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trian HICP and its components. Section 2.1 comprises the choice of ARIMA
specifications and presents the estimation results. Section 2.2 contains infor-
mation on the variables which were selected for the VAR models. The VAR
specifications are presented in section 2.3.

2.1 ARIMA Models

The work of Box and Jenkins [2] proved to be among the most influen-
tial publications in applied forecasting. As a result there was a massive
spread of statistical models and, in particular, of the so-called ARIMA model.
The Box-Jenkins method proposed a systematic way in ARIMA modelling
which consists of an iterative procedure of (1) formulating a plausible model
(identification), (2) fitting the model to the data (estimation), (3) diagnostic
checking, and if necessary, adjusting the model. In the identification stage
a (seasonal) ARIMA(p, d, q) × (P,D,Q)1 model is chosen, i.e. the parame-
ters p, d, q, P,D,Q are selected. Box-Jenkins proposed to examine the auto-
correlation and partial autocorrelation functions in order to select a model
applicable to a particular situation. Hence this stage is subject to heuristic
methods that may vary with each time series expert. On account of this
we try to automate this stage as much as possible so as to enhance repro-
ducibility and objectivity of the model selection procedure. The conditions
of stationarity and invertibility presumed by the Box-Jenkins method were
met. To achieve stationarity we performed unit and seasonal differencing at
lag 12 to achieve stationarity.

An automatic modelling method for univariate time series: Con-
trary to the inspection of sample autocorrelation and partial autocorrelation
functions in the identification stage we circumvent this process by estimating
a whole range of models and ranking them according to information criteria
in a first step. In a second step a couple of top-ranked models are evalu-
ated according to their out-of-sample forecasting performance in the follow-
ing way: The top-five-ranked models were estimated for the period 1990:01
1996:02. Out-of-sample forecasts are generated up to 1997:02. Comparison
with the true value of the respective price index gives one realization of the
forecast errors up to 12 months ahead for each model. The next step is to
estimate the models for 1990:01 1996:032 and to generate forecasts up to

1For a definition of the notation see appendix A.
2For the non-energy industrial goods index we used a shorter sample starting at January

1995 as there is a break in the data at the end of 1994. Consequently estimation was
conducted over the period 1995:01 to 2001:05 and only in-sample forecasts were performed.
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1997:03. This procedure is repeated up to an estimation period that includes
2000:05 and generates a 12-months ahead forecast for 2001:05. This rolling
method of forecasting yields a sample of 53 12-months ahead forecast errors
for each specification and subindex except the non-energy industrial goods
index. From these 12-months ahead forecasts the forecasting accuracy statis-
tics, as defined in appendix A.3, are computed3 (The choice of the forecasting
statistic does not have an influence on the ranking of the models).

In tables 1 to 3 the top-five specifications were ranked according to the
Bayes criterion of Schwarz (SCI) although the Hannan-Quinn and Akaike
Information criteria were also considered in evaluating the specifications.
Additionally the best performers were evaluated as to whether they pass di-
agnostic tests, i.e. (1) no autocorrelation of residuals, (2) parameter stability
over the sample from January 1990 to May 2001 and the subsample from Jan-
uary 1990 to January 1996 (the start of the out-of-sample forecasting period),
(3) significance of parameter estimates.

Table 1: Top-five models according to SIC: HICP and Services

Rank HICP Services
Model SIC Model SIC

1 (0,1,0)x(0,1,1) -12.076 (1,1,2)x(1,1,0) -12.055
2 (1,1,0)x(0,1,1) -12.057 (1,1,0)x(1,1,0) -12.037
3 (0,1,1)x(0,1,1) -12.056 (0,1,1)x(1,1,0) -12.031
4 (0,1,0)x(1,1,1) -12.051 (1,1,0)x(0,1,1) -12.021
5 (1,1,0)x(1,1,1) -12.029 (1,1,2)x(1,1,1) -12.019

Note: A seasonal ARIMA model of order (p,d,q) and seasonal ARIMA terms
(P,D,Q) is abbreviated (p,d,q)x(P,D,Q) (see equation 3 in appendix A for
the general specification). For example, with monthly data (1,1,0)x(0,1,1)
denotes the seasonal ARIMA model yt = δ + φ1yt−1 + Θ1εt−12, where yt =
(1 − L)(1 − L12)xt = xt − xt−1 − xt−12 + xt−13. Bold face numbers indicate
models which pass diagnostic tests.

For the HICP both the Schwarz and Hannan-Quinn information crite-
ria suggest model (0,1,0)x(0,1,1). The Akaike information criterion instead
ranks model (1,1,4)x(1,1,1) as the best specification. Although this specifi-
cation is far worse than the top-five models in terms of forecasting accuracy.4

3The RATS code for the optimisation procedure described was kindly provided by A.
Meyler of the Central Bank of Ireland.

4(1,1,4)x(1,1,1)is not even ranked among the top twenty specifications.
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The Akaike criterion tends to overfit the data because it does not penalise
the introduction of more parameters to the same extent as the Bayesian and
Hannan-Quinn criteria.5 With a view to forecasting, introducing of too many
parameters is undesirable if this leads to an overfitting of random features
that will not be relevant for future data. The latter is clearly what specifi-
cation (1,1,4)x(1,1,1) does. Model (0,1,0)x(0,1,1) is the preferable ARIMA
specification because it outperforms in terms of forecasting accuracy and is
the only one of the top-5-ranked models which pass the diagnostic stage.
The remaining specifications exhibit either unstable or insignificant parame-
ter estimates.

In case of the subcomponent services the three considered information cri-
teria suggest model (1,1,2)x(1,1,0) although this specification does not pass
diagnostic tests due to unstable parameter estimates. The same holds true for
model (1,1,2)x(1,1,1). Models (1,1,0)x(1,1,0), (0,1,1)x(1,1,0), (1,0,0)x(0,0,1)
remain to be evaluated according to their forecasting performance. Indepen-
dent of the accuracy measure (1,1,0)x(1,1,0) outperforms the other specifi-
cations although the difference is very small.

Table 2: Top-five models according to SIC: Non-Energy Industrial Goods
and Energy

Rank Non Energy Industrial Goods Energy
Model SIC Model SIC

1 (0,1,0)x(1,1,0) -11.943 (0,1,0)x(1,1,1) -8.525
2 (0,1,0)x(1,1,1) -11.936 (0,1,1)x(1,1,1) -8.523
3 (0,1,0)x(0,1,1) -11.934 (1,1,0)x(1,1,1) -8.519
4 (0,1,1)x(1,1,0) -11.915 (0,1,0)x(0,1,1) -8.506
5 (1,1,0)x(1,1,0) -11.915 (0,1,1)x(0,1,1) -8.500

Note: For definitions see Table 1.

For the non-energy industrial goods component the top-three models pass
the diagnostic stage. The information criteria suggest different models as the
most appropriate specification. The Hannan-Quinn and the Schwarz criterion
suggest models (0,1,0)x(1,1,1) and (0,1,0)x(1,1,0) respectively. The Akaike
Information criterion suggests a more complicated specification, namely
(1,1,3)x(1,1,1). The latter is not among the top five according to the Schwarz
criterion. Parameter estimates are unstable as well as those for specifications
ranked fourth and fifth. The top-ranked model according to the Schwarz cri-

5See also the discussion of the information criteria in appendix A.3.
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terion clearly outperforms the other specifications in terms of forecasting
accuracy.

For the energy component of the HICP we decided to carry over models
(0,1,0)x(1,1,1) and (0,1,0)x(0,1,1) to the forecasting evaluation stage. Ac-
cording to the Hannan-Quinn and Akaike criteria model, (0,1,1)x(1,1,1) is
top-ranked but does not have stable parameter estimates as well as those for
the third and fifth specification. Specification (0,1,0)x(0,1,1) does have the
best forecasting accuracy.

Table 3: Top-five models according to SIC: Processed food and Unprocessed
food

Rank Processed Food Unprocessed Food
Model SIC Model SIC

1 (0,1,0)x(0,1,1) -11.091 (0,1,0)x(0,1,1) -8.345
2 (2,1,1)x(0,1,1) -11.075 (0,1,1)x(0,1,1) -8.332
3 (1,1,0)x(0,1,1) -11.059 (1,1,0)x(0,1,1) -8.329
4 (0,1,1)x(0,1,1) -11.058 (1,1,1)x(0,1,1) -8.317
5 (0,1,0)x(1,1,1) -11.056 (0,1,0)x(1,1,1) -8.315

Note: For definitions see Table 1.

In case of the processed food component (0,1,0)x(0,1,1), (2,1,1)x(0,1,1)
pass the diagnostic statistics whereas the remaining classified specifications
exhibit unstable and/or insignificant parameter estimates. The Akaike and
Hannan-Quinn information criteria suggest (2,1,1)x(0,1,1). (0,1,0)x(0,1,1)
is proposed by the Schwarz information criterion. In terms of forecasting
accuracy the less complicated specification (0,1,0)x(0,1,1) dominates.

For the unprocessed food component models ranked first and fifth are not
specified properly due to autocorrelated residuals. The model ranked fourth
does not have stable parameter estimates. (0,1,1)x(0,1,1) and (1,1,0)x(0,1,1)
pass the diagnostic stage. The Akaike criterion suggests (0,1,6)x(0,1,1) and
the Hannan-Quinn criterion (0,1,1)x(0,1,1). Both specifications lack appro-
priateness due to parameter instability. (0,1,1)x(0,1,1)6 has a better fore-
casting performance compared to (1,1,0)x(0,1,1) but the difference is quite
small.

The preferred ARMA models, in terms of out-of-sample forecast accuracy
are presented in table 4.

6It is noteworthy in this case that accuracy improves with the length of the forecast
horizon.
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Table 4: “Optimal” ARMA models
Specification Services Non-Energy Energy

Industrial Goods
AR(1) -0.25 (-2.96)

SAR(12) -0.36 (-3.81) -0.54 (-6.23)
SMA(12) -0.74 (-10.97)

Diagnostic checks Statistic
Adjusted R2 0.16 0.22 0.33

Ljung-Box Q statistic Q(32)=37.02 Q(33)=37.18 Q(33)=30.32
(0.25) (0.28) (0.60)

Specification Processed Food Unprocessed Food HICP
MA(1) -0.17 (-2.01)

SMA(12) -0.73 (-11.16) -0.43 (-5.40) -0.57 (-7.35)
Diagnostic checks Statistic

Adjusted R2 0.24 0.13 0.23
Ljung-Box Q statistic Q(33)=42.73 Q(32)=41.54 Q(31)=32.40

(0.12) (0.12) (0.50)
Note: The estimation period is January 1990 to May 2001. One regular and
seasonal difference (∆1∆12) is taken from the logarithmic variables. AR(1)
and MA(1) are the first autoregressive and moving average components.
SAR(12) and SMA(12) the 12th multiplicative autoregressive and moving
average seasonal components. T-values are in brackets of parameter
estimates. P-values are in brackets of diagnostic statistics.

8



2.2 Variable selection for the VAR models

In our analysis we tried a wide variety of possible indicators (see appendix
B) which can roughly be divided into two categories. First the “macro”
variables which were supposed to influence all indicators, for instance M1,
industrial production and interest rates. Second, we tried to find sector-
specific variables which are likely to influence the price movements in the
subindexes. For instance car sales as a possible driving force for the non-
energy industrial goods index or the wholesale price index for meat as an
indicator of inflation in the processed food component.

Running the prefitting regressions (see equation 8 in appendix A) yielded
the following results (F-statistics and associated p-values are given in ap-
pendix C):

The subindex for processed food seems to be mainly driven by credit to
nonbanks, wholesale prices for unprocessed food and the long-term interest
rate, which are significant at 1, 3, 6 and 12 leads. The German consumer price
index has leading indicator properties for up to 6 leads. Also the monetary
aggregate M1 is somewhat significant over 6 and 12 leads.

The subindex for unprocessed food is influenced by three variables: the
most influential indicator seems to be the spread between long- and short-
term interest rates (with leading indicator properties at 3, 6 and 12 leads).
Wholesale prices for unprocessed food and the German consumer price index
appear to influence the index in the medium run (6 leads).

Prefitting the energy price index revealed that world energy prices and
wholesale energy prices forecast the index well over the full horizon while
orders and credit to nonbanks do so over 3 and 12 leads respectively.

For the services subindex, only M1 turned out to be significant over all
forecast horizons. The variable credit to nonbanks has leading indicator
properties for up to 6 leads. Industrial production and the world price of
energy and the nominal wage index are significant at 12 leads.

Our VAR model for headline HICP includes M3 and the interest rate
spread, which seem to have leading indicator properties up to 12 leads. Sales
price expectations proved to be significant over the medium term (1 to 6
leads) while credit to nonbanks was significant at 12 leads.

The prefitting regressions were not conducted for the index of non-energy
industrial goods prices since this series has a serious break at 1994:12 leaving
too few observations for estimating a VAR model.
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2.3 VAR models

The prefitting regressions described above have pinned down a set of ex-
planatory variables which are most relevant for every subindex of the HICP
(except the non-energy industrial goods price index for which only an ARIMA
model could be estimated). The next step in our analysis consists of setting
up VAR models for the subindexes which can then be used for forecasting
purposes. The forecast of the HICP itself is generated as a weighted sum of
the forecasts of the subindexes. Alternatively a VAR for the HICP itself is
estimated.

As mentioned in the section on the theory of VAR modelling we faced
two decisions, namely how many lags to include in the VARs and how to deal
with the apparent nonstationarity present in all subindexes and explanatory
variables. Our model building strategy is as follows:

With respect to the problem of nonstationarity we decided to run the
risk of overparameterisation and to estimate all systems in levels rather than
in first differences. Ideally, imposing cointegration should improve the ac-
curacy of forecasts, particularly for longer forecasting horizons. However,
when working with real data imposing cointegration has not yet proved to
be unambiguously superior. For example, Allen and Fildes [1] found no clear
evidence in favour of imposing cointegration in published forecasting studies.7

The advantages of a VAR in levels are the incorporation of information
which would be lost if the series are differenced. In addition ordinary least
squares will give consistent estimates. Also, we decided to include time trends
in every VAR in order to control for the deterministic part of the trending
behaviour in the variables.

The selection of the lag structure in the VARs proceeds as follows: The
first step of this procedure is to estimate most models with a minimum lag
length of 4 and a maximum lag length of 14 for the period 1987:01 1996:02.
Simulated out-of-sample forecasts are generated up to 1997:02. The next
step is to estimate the models for 1987:01 1996:03 and to generate forecasts
up to 1997:03. This procedure is repeated up to an estimation period that in-
cludes 1999:128 and generates a 12-months-ahead forecast for 2000:12. This

7One reason for that finding is that some authors do not impose the correct order of
cointegration vectors. Clements and Hendry [5] state “In terms of empirical practice, it
appears that imposing too few cointegration vectors may impose greater costs in forecast
accuracy than allowing the presence of ‘spurious’ level terms. ... estimating and forecasting
with an additional ‘spurious’ levels term is likely to be no more costly in terms of forecast
accuracy than underestimating the cointegrating rank by one”.

8December 2000 was the latest month for which observations of all variables used in
the VARs were available. The estimation period was constrained to December 1999 so as
to retain 12 months for out-of-sample forecasts.
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rolling method of forecasting yields a sample of 47 12-months-ahead forecast
errors for each specification and subindex except the non-energy industrial
goods index. From these simulated 12-months-ahead forecasts the root mean
squared error, as defined in appendix A.3, is computed and the specification
that minimises this criterion is chosen. The automated model selection pro-
cedure described above results in specifications shown in table 5.

Table 5: “Optimal” VAR models

Index Endogenous Variables Exogenous Variables Lags
Unprocessed Food HICPA, GHPUPF, RLONG-RSHORT, 1 to 4

TL, VPIDE deterministic trend

Processed Food HICPB, GHPUPF, TL, RLONG-RSHORT, 1 to 2 and
VPIDE, CREDIT deterministic trend 10 to 14

Services HICPE, TL, RSHORT, 1 to 2 and
CREDIT, IP, M1, deterministic trend 9 to 10

Energy HICPD, ORDERS, PWORLD EF, EX$, 1 to 6 and
GHP-E, VPIDE RLONG-RSHORT, 10

deterministic trend

Headline HICP HICP, M3, RLONG-RSHORT 1 to 2 and
CREDIT, P-EXP deterministic trend 12 to 13

Note that the inclusion of identical variables in different VARs, for in-
stance the wage rate index, wholesale prices and German consumer prices,
produces a possible inconsistency since more than a single forecast is gen-
erated for these variables. Furthermore, degrees of freedom diminish by the
estimation of the additional parameters.9 Since it seems plausible that several
subindices are influenced by the same factors, including identical variables
in different systems can account for this situation. Alternatively, one could
explicitly model the comovements in the subindexes.

9However, this appears to be a minor problem due to the low number of included lags.
Nevertheless, the inconsistent forecasts of endogenous variables remain a weakness of our
approach. A possible solution that could be considered in future work is to use exogenous
forecasts for these variables instead of predicting them within the respective systems.
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The energy price index is modelled differently from the others in that
the world energy price index is specified as an exogenous variable. This
means that there is no equation for this variable in the system, implying
that “outside forecasts” must be provided as an input in the forecasting
process. One possibility is to use prices of forward contracts on crude oil.

3 Forecast performance and evaluation

In order to evaluate our forecasts of the Austrian HICP and its components
we used the root mean square error (RMSE) criterion as defined in appendix
A.3. Forecasts where generated for all subindexes using the optimal VAR and
optimal ARIMA models described above. Since in-sample forecasts largely
resemble the fit of the chosen model, which may be a poor proxy for the
forecasting performance of the model, we used the procedure for generating
out-of-sample forecasts as described in section 2.1 and 2.3.10 The evaluation
period ends in 2000:12 yielding a total of 47 twelve-months out-of-sample
forecasts.

In the next step we used the forecasts generated by the VAR-models (plus
the ARIMA model forecasts of the non-energy index) and all ARIMA models
to aggregate them up to forecasts for the HICP according to the weights they
have in the HICP index.11

In table 6 forecasting accuracy of the optimal aggregated models and
optimal models for HICP inflation are presented:

The general conclusion is that ARIMAs have smaller forecasting errors
over a shorter horizon while VARs perform better over longer forecasting
horizons (8 to 12 months ahead). ARIMA models on the other hand outper-
formed the VAR approach up to 6-months ahead. However, the difference to
the headline HICP VAR is rather small. Interestingly there is apparently no
loss of information when considering the headline HICP VAR compared to
the aggregate of optimised subcomponents up to 8 months ahead. Only over
the longer horizon (10 to 12 months ahead) the aggregated VAR forecasts
of the optimised subcomponents do outperform the VAR for headline infla-
tion. Especially noteworthy is the almost perfect performance of the ARIMA
model of headline HICP for the one month-ahead forecast.

10For VARs we use data starting at 1987:01 and for ARIMAs we use data starting at
1990:01.

11As of January 2001 the respective weights are 10.8% for processed food, 5.5% for
unprocessed food, 31.3% for non-enery industrial goods, 7.9% for energy and 44.5% for
services.

12



Table 6: Root Mean Squared Forecast Errors

Forecast aggregated Headline aggregated Headline
Months VARs for HICP VAR ARIMAs for HICP ARIMA

subcomponents subcomponents
1 0.39 0.28 0.20 almost 0
2 0.51 0.35 0.31 0.35
3 0.58 0.42 0.38 0.49
4 0.63 0.49 0.44 0.62
5 0.66 0.54 0.50 0.72
6 0.70 0.59 0.55 0.80
7 0.72 0.62 0.62 0.87
8 0.74 0.65 0.69 0.95
9 0.70 0.67 0.75 1.00
10 0.71 0.72 0.80 1.04
11 0.72 0.76 0.87 1.10
12 0.74 0.80 0.90 1.16

Note: The selection criterion was the 12-months ahead root mean square
error.
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4 Conclusions and directions for further re-

search

This paper provides a comparative assessment of VAR and ARIMA mod-
els to forecast Austrian HICP inflation over the short term. We consider
generating forecasts of five sub-components and aggregating them up to the
HICP forecast. In addition we consider forecasts for headline HICP itself.
The model selection procedure is automatic in the sense that it involves the
estimation of all possible ARMA models that encompass (11,11)x(1,1) (i.e.
12 × 12 × 4 = 576) specifications and most lag specifications for VARs that
encompass a maximum lag order of 14 and a minimum lag order of 4 in a
first step. The second step consists of selecting the model with the smallest
12-months out-of sample root mean squared forecasting error.

The evaluation of the forecasting performance reveals that VAR models
predict the HICP inflation more accurately than ARIMA specifications over
a longer forecasting horizon (8 to 12 months ahead). The “bottom-up ap-
proach” (i.e. aggregating forecasts of subcomponents to the HICP inflation
forecast) improves forecasting accuracy substantially in comparison to the
forecast of overall HICP inflation in case of the ARIMA models. In case
of the VARs the (slight) superiority of the “bottom-up approach” is demon-
strated only over the longer forecasting period (10 to 12 months ahead). One
reason for this result might be that the positive correlation of the indices is
not fully captured by common explanatory variables of the VARs for the
subcomponents. Therefore we expect that one promising direction for fu-
ture research is a further investigation of the variable selection based on the
prefitting regressions.
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A Appendix: Forecasting inflation with time

series models

A.1 Introductory comments on ARIMA processes

A general class of univariate time series models is the Autoregressive In-
tegrated Moving Average (ARIMA) model. An ARIMA model represents
current values of a time series by past values of itself (the autoregressive
component) and past values of the stochastic error term (the moving aver-
age term). The acronym ‘I’ stands for integrated and refers to the number
of times a series must be differenced to achieve stationarity. The ARIMA
(p,d,q) process of a variable yt can be written as

φ(L)(1 − L)dyt = δ + θ(L)εt (1)

where εt is independent and normally distributed with zero mean and
constant variance σε. Furthermore, δ is a constant, φ(L) and θ(L) are the
autoregressive (AR) and moving average (MA) polynomials, respectively,
with orders p and q, so that:

φ(L) = 1 − φ1L − . . . − φpL
p, θ(L) = 1 − θ1L − . . . − θqL

q (2)

If the series is seasonal, with s time periods per year, then a seasonal
ARIMA model may be obtained as a generalization of equation 1. Let Ls

denote the operator such that Lsyt = yt−s. A seasonal ARIMA model with
non-seasonal terms of order (p, d, q) and seasonal terms of order (P,D,Q)
is abbreviated to a seasonal ARIMA(p, d, q) × (P,D,Q) model and may be
written

φ(L)Φ(Ls)(1 − L)d(1 − Ls)Dyt = δ + θ(L)Θ(Ls)εt (3)

where Φ, Θ denote polynomials in Ls of orders P, Q, respectively.
This highlights the two main problems inherent in ARIMA modelling.

First, it is vital for correct statistical inference to choose suitable values
for the two orders of differencing, both seasonal (D) and non-seasonal (d),
so as to make the series stationary and remove (most of) the seasonality.
Second, the correct orders of the φ(L), θ(L), Φ and Θ polynomials have to
be determined. Hence there may be AR and MA terms at lags which are a
multiple of the season lag s.

There are important differences between stationary and non-stationary
time series. Innovations to a stationary series die out over time and the
process returns to its long run mean while in a non-stationary series shocks
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are accumulated, i.e. a non-stationary series does not exhibit mean reversion.
A second difference is that the variance of a non-stationary process goes to
infinity as time goes to infinity, while the variance of a stationary process is
time invariant.

Another difference between stationary and non-stationary time series can
be exploited as a first guess towards identification of the degree of integration
of the series. This difference lies in the behaviour of the autocorrelation
function. If inspection of the plot of this function shows that it dies out
slowly, this is some evidence that the series is non-stationary. If it goes to
zero immediately, it will be stationary. Visual inspection can give only a
first approximation of the degree of integration. What is really required is
a formal test. The most widely used test for this purpose is the Dickey-
Fuller (DF) test [6]. The DF test is based on the estimation of the following
regression equation:

∆yt = γyt−1 + vt (4)

and testing the null hypothesis of non-stationarity (γ = 0) against the
alternative of γ < 0. If it cannot be rejected, the series must be integrated
and therefore requires some form of differencing to achieve stationarity (which
may also be seasonal). If the variable is generated by a stochastic and/or
deterministic trend, it will be necessary to augment the equation with a drift
and/or a deterministic trend. In case the process {vt} is autocorrelated,
equation 4 must be augmented with additional lagged left-hand variables.

Having determined the correct order of differencing to render the series
stationary, the next step is to find the appropriate ARMA specification to
model the stationary series. The traditional approach to this problem goes
back to Box and Jenkins [2]. Their identification procedure involves examin-
ing plots of the sample autocorrelation and the partial autocorrelation and
inferring from patterns observed in these functions the correct form of the
ARMA model. The autocorrelation between yt and lag k of the series, i.e.
yt−k, is defined as the covariance between yt and yt−k, scaled by the variance
of the yt series. The autocorrelation function shows all the autocorrelations
for different time horizons. The partial autocorrelation measures the “direct”
correlation between yt and yt−k and hence eliminates the effects of interven-
ing values yt−1, . . . , yt−k+1. In regressing yt on all lags up to yt−k the partial
autocorrelation between yt and yt−k is equal to the estimated regression co-
efficient on yt−k. The partial autocorrelation function shows all the partial
autocorrelations for different time horizons.

When the data are generated by pure MA or AR processes, identification
using the autocorrelation function and the partial autocorrelation function
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is a relatively straightforward matter. If there is a pure AR(p) process, the
partial autocorrelation function will cut off after p lags (since at lag p+1 there
is no correlation between yt and yt−p−1) while its autocorrelation function will
die out smoothly. Given a MA(q) process its autocorrelation function cuts
off after q lags while its partial autocorrelation function decays smoothly.

Things get more difficult when the data cannot be represented by pure AR
or MA processes, which implies that a mixed process (ARMA) is required. In
that case it is very probable that different users of the Box-Jenkins method
will specify different models when confronted with the same data.

A natural measure of the quality of an ARMA model is the “fit”, i.e.
the amount of variation of the series under investigation which is explained
by the autoregressive and moving-average terms of the process. This fit will
always improve when more AR and MA terms are added. However, the
inclusion of more terms entails a loss of degrees of freedom, which increases
the variance of the single coefficients in the model and hence reduces the
forecasting performance. A parsimonious model takes account of this trade-
off. The procedure to arrive at a specification which has a good fit as well
as a high number of degrees of freedom is to minimise a penalty function of
the form

P (p, q) = ln σ̂2
p,q + (p + q)

C(T )

T
(5)

where σ̂2
p,q is the maximum likelihood estimate of the variance of the white

noise error process for an ARMA specification of order (p, q), C(T ) is some

function of the number of observations T . The penalty term (p + q)C(T )
T

counterbalances the fact that σ̂2
p,q decreases the higher the order (p, q) of

the ARMA model. Equation 5 thus expresses the trade-off between the
fit and the simplicity of the model. For C(T ) = 2, we obtain the Akaike
Information Criterion (AIC), for C(T ) = ln(T ) the Bayesian Information
Criterion of Schwarz (SIC), and for C(T ) = 2 ln(ln(T )) the Hannan-Quinn
(HQ) Information Criterion. The fundamental difference between the AIC
and the SIC is that the former is essentially an estimate of the ability of a
model to predict future data. The SIC criterion focuses less on predictive
accuracy but more on the probability that the model is correct. However,
extra parameters may reduce predictive accuracy if the better fit is due to
the purely random variation of new data. The HQ Information Criterion lies
somewhere in the middle between AIC and SIC. Another difference between
AIC and SIC is that the latter is a consistent estimator of the order of an
ARMA process whereas the former is not.12

12Some authors (see [9]) argue that they had better experience with the SIC in practical
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The second criterion for the quality of the model is the behaviour of the
residuals. The plot of the residuals should be free from outliers (which could
influence parameter estimates) and from any autocorrelation. If the model is
specified correctly, the acf of the residuals should resemble the autocorrelation
function of a white noise process, i.e. it should decay immediately to zero
and remain there.

A formal test for the presence of autocorrelation is the Ljung-Box statis-
tic. This test sums up the squared autocorrelations up to lag p and therefore
tests whether any of the autocorrelations up to lag p are nonzero. If this sum
is large the hypothesis of autocorrelation cannot be rejected.

Another essential check is to assess the robustness of a selected model
by estimating it over different time periods. If the parameter estimates are
not stable over time this indicates that further considerations will have to be
given to the model. This non-constancy could indicate breaks in the series
under investigation. If this is the case, which can be determined with tests for
structural breaks, the model should only be estimated with the data after the
break, as these observations give a better description of the data generation
process.

A.2 VAR(X) models

The starting point of modelling a VAR is the formulation of a general (unre-
stricted) vector autoregressive model. A VARX model consists of regressing
each current endogenous variable in the model on all the lagged endogenous
and exogenous variables (hence VARX). Compactly this can be written as:

Ψ(L)Yt = ΩXt + Zt (6)

where Yt is a m× 1 vector of endogenous variables, Xt an n× 1 vector of
exogenous variables13 included in the system, Ω a m×m matrix of parameters
and Zt a m × 1 vector of random disturbances which may be correlated
contemporaneously (i.e. between equations) but not autocorrelated. Ψ(L) is
a matrix of polynomials in the lag operator of order p, so that:

Ψ(L) = I − Ψ1L − . . . − ΨpL
p (7)

with Ψi matrices of dimension m × m. Due to the fact that Austria
is a small and open economy price dynamics depend to a large extent on
developments from abroad. In our analysis variables such as interest rates,

applications.
13In our analysis we used only contemporaneous exogenous variables.
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exchange rates and the oil price enter the VAR system exogenously, yielding
a VARX model.14 Since a VAR model involves only lagged variables, and
since these variables are not correlated with the error term (given there is no
autocorrelation) and all equations carry the same explanatory variables, an
efficient estimation procedure consists of estimating each equation separately
using ordinary least squares.

There are two noteworthy features in the application of a VAR model
for forecasting purposes. First, as long as no restrictions are introduced into
the model no account is taken of economic theory (as soon as the variables
which enter the system are determined). Second, usually the variables are
endogenous15 in the system. For these variables it is not necessary to provide
any future values in the forecasting process. Generating forecasts for all the
variables in the system simply consists of using the set of linear equations
which incorporate the estimated parameters and the data points up to lag p,
yielding a one-step forecast conditional on the realisation of the past values
of the variables in the system. This forecasted vector is then used as the last
data vector in calculating the two-months forecast. Forecasts with a longer
horizon are calculated in a similar way.

Using VARs to model economic time series requires the selection of vari-
ables to be included in the system. At this stage economic theory plays an
important role. But if the focus is on forecasting performance it may be
optimal to supplement the theoretical with statistical information. One pos-
sibility is to conduct a “leading indicator” analysis (described below), which
determines which of the variables suggested by theory contain information
about the future course of the variable of interest (in our case inflation). It is
important that all variables which appear relevant according to the leading
indicator analysis can be forecast with reasonable accuracy. Otherwise inac-
curate forecasts of one variable are transmitted to all equations and reduce
the forecasting precision of all variables (given that the variable which is diffi-
cult to forecast enters all equations together with non-zero coefficients). This
points to the main advantage of the VAR analysis against ARIMA models.
Since the course of future inflation will usually be influenced by some other
variables forecasts conditional on these variables are likely to be more precise.
In the VAR model the advantages of conditional forecasting are magnified
by the fact that even such variables which do not explain future movements
of inflation may improve its forecast since they can help to improve the pro-

14A further reason for VAR models with exogenous variables is the common assumption
of “no change” in interest rates in forecasting exercises for monetary policy purposes.

15The exceptions are variables which are mostly controlled by monetary authorities (in-
terest rates,...) or variables which are external assumptions (oil price,...). These variables
are exogenous in the VAR forecasts.
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jection of other variables in the system which do influence future inflation.
Given that the vector of endogenous variables is determined the next

step in a VAR analysis is the determination of the appropriate lag length.
As mentioned above this is important since adding more lags tends to clear
the residuals of autocorrelation, which is essential for consistent estimation
of the parameters of the model. But if too many lags are included there will
be a loss of degrees of freedom, which reduces the preciseness of the estima-
tors. Criteria which take account of this problem are the Akaike Information
Criterion, the Bayesian Information Criterion and the Hannan-Quinn Infor-
mation criterion (defined in equation 5), applied to the covariance matrix of
the system, yielding an optimal average lag length for all equations. In our
choice of the lag length we rely on the one that maximises the forecasting
accuracy.16 As Lütkepohl [18] states “For instance, a VAR model is often
used for forecasting. In such a case we are not so much interested in the cor-
rect order of the DGP but in obtainig a good model for prediction. Hence it
seems useful to take the objective of the analysis into account when choosing
the VAR order”.

The number of degrees of freedom with the implied accuracy of estimated
parameters is of particular interest if the goal of the estimation exercise is
forecasting. This constitutes a main disadvantage of VAR models when em-
ployed for this goal: since all variables are included in all equations a large
number of parameters has to be estimated (if the number of endogenous
variables is k and the number of lags p then every equation will carry k × p

variables and parameters). It would therefore be desirable to exclude those
explanatory variables in the system whose estimated coefficient is zero, which
leaves the model well specified and reduces the number of parameters. How-
ever, this is difficult for two reasons: First, in such cases the equations do not
carry the same variables in every equation, which makes it impossible to esti-
mate each equation separately, with the associated high computational cost
of the then required systems estimator (for instance Full Information Maxi-
mum Likelihood estimation). Second, since the explanatory variables are au-
toregressive it is very likely that some degree of multicollinearity is present,
i.e. there exists linear dependence between the explanatory variables. The
effect of multicollinearity will be similar to a lack of degrees of freedom - high
parameter variances. Furthermore the presence of multicollinearity biases t-
and F-statistics towards the type II error, making exclusion tests unreliable.

An additional problem arises if some or all of the variables in the system
are integrated of a degree greater than 0. In this case it has to be decided
whether the variables should be differenced or not. The main point in this

16The specification which minimised the root mean squared error was selected.
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issue is that the variables in the system may be cointegrated, i.e. there exists
a linear combination of the non-stationary variables in the system which is
stationary. In this case differencing of the variables ignores important interre-
lationships between the variables in the levels, which induces misspecification
and consequently reduces the forecasting performance of the model.

Before the actual VARs are estimated, it is necessary to select the vari-
ables to be included in the model. A wide variety of sources might be respon-
sible for movements in the price level. Hence, as a first step in determining
the relevance of various indicators (e.g. monetary aggregates, indicators of
aggregate activity, wages, exchange rates) we fit the following regression

π
j
t+k =

13
∑

i=1

αiπ
j
t+k−i +

13
∑

i=0

βiYt−i + ε
j
t j = 1, ..., 5 (8)

where π
j
t+k is the inflation rate in period t+k for subindex j (four subcom-

ponents and headline HICP) on a monthly basis, Yt is the indicator variable
to be tested (both are made stationary by differencing). The equations are
estimated over the full sample from 1987:01 to 2001:05. Since it appears nat-
ural that different variables might be helpful predictors at different forecast
horizons, we estimated the equations for several leads (k = 1, 3, 6, 12).

The relevance of indicator variables is determined by testing the joint
hypothesis that all the βi are simultaneously zero. Although a statistical test
is employed, the selection of the variables still involves a substantial amount
of judgement. This is true especially in cases where the significance depends
crucially on the forecast horizon. It should be noted that determining the
importance of various indicators on the basis of the estimated regressions
and the Wald test statistics can act only as a preliminary tool for sorting
out relevant variables. It is possible that variables which are significant in
the regression do not improve the forecasts of the multi-equation model. It
is also known that the predictive power of inflation indicators is not very
stable over time. Hence, one should expect that estimation of regressions
over different subsamples might lead to different results.
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A.3 Appendix: Measuring forecast accuracy

In general there are a few factors that need to be considered when choosing a
forecasting method. The most important include forecasting accuracy, cost,
properties of the series being forecasted and available computer software. We
have used forecasting accuracy as a benchmark in our comparison. Measuring
forecasting accuracy is, however, not a trivial task.

Let et+n|It
= xt+n − x̂t+n|It

be the n months ahead forecast error given
Information It available at time t, xt+n the realised value at time t + n and
x̂t+n|It

the forecast of xt+n with information set It.
Four commonly used accuracy statistics for n months ahead forecasts can

be defined as

MAE(n) = T−1 ∑T
t=1 |et+n|It

| mean absolute error

MSE(n) = T−1 ∑T
t=1 e2

t+n|It
mean square error

RMSE(n) =
√

T−1
∑T

t=1 e2
t+n|It

root mean square error

U2(n) =

√

∑

T

t=1
e2

t+n|It
(n)

√

∑

T

t=1
x2

t+n

Theil’s U

Which of those measures to choose for the evaluation of forecasting ac-
curacy? The inherent difficulty in choosing one of those measures lies in the
fact that it depends on the characteristics of the loss function of the fore-
caster. Among the most important characteristics are its functional form
(linear or nonlinear) and the degree of symmetry. With a symmetric loss
function overestimation is as bad as underestimation. An asymmetric shape,
however, implies that an amount of overestimation is not as bad as an equal
amount of underestimation. What accuracy measure should be chosen given
the loss function of a central bank?

The MAE obviously implies a linear loss function of the forecaster as this
measure doubles if the forecasting error doubles. In contrast, the MSE as
well as the RMSE and Theil’s U17 imply quadratic and hence symmetric loss
functions as an increase in the forecasting error is penalised quadratically.
The MAE in contrast implies an asymmetric loss function. An additional

17There are two variants of Theil’s inequality coefficient labelled U1 and U2. U1 was
the original form of Theil’s accuracy statistic (see [23]). The definition in appendix A.3
refers to U2 originally published in [24]. U1 suffers from the deficiency of not being a
monotonic function of the forecasting error et(n). Granger and Newbold [10] have shown
that minimizing U1 might fail to yield the optimal predictor.
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feature is the scale dependence of the MAE, MSE and RMSE. Theil’s U
instead is scale independent and hence the preferable measure if comparisons
are made across series.

In our empirical application in section 3 we use the RMSE as we are
of the opinion that the central bank’s loss function is better described by
a quadratic function or some transformation of it so as to penalised large
deviations from an objective stronger than small deviations. Furthermore,
as we are not comparing forecasting accuracy across series the application of
the RMSE appears to be an appropriate measure.
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B APPENDIX: List of variables

Variable Comments Databank Code
ip Industrial production, total exclusive construction, SBBAAT11*

1990=100; from January 1996 according to NACE-system
ipexe Industrial production, mining and manufacturing, 1990 = 100; SBEAAT11*

as of January 1996 according to NACE-system
ipe Industrial production, energy, 1991 = 100; SCHAAT01*

as of January 1996 according to NACE-system
orders Orders in Industry, total inflow, value, TBHAAT01*

as of January 1996 according to NACE-system
rshort Money market rate, 3-months, moving average HEEAAT02
rlong Secondary market yield, central government bonds HGCAAT01*

(9 to 10 years), end of month
realex Effective exchange rate, real, CPI based, moving average QSHAAT02*
ex$ Exchange rate, AT Schillings/US Dollar, moving average QBCAAT01*
vpide Cost of living index for Germany, all items, VEBADE01

West and East (before 1991 West Germany) Germany (VEBA DE51)*
epupf Producers’ price index for pigs exclusive VAT, PLESHN**

weighted price for average quality
tl Negotiated standard wage rate index, overall index Y8PBBS**

exclusive public sector employees, 1986 = 100
p-exp Sales price expectations, balance in percent, EU DG2 TEIATVP3**
pworld World market price index, HWWA, 1975 = 100, $ basis WPNGGS**
tl-upf Negotiated standard wage rate index. agriculture and forestry, 1976 = 100 YNLBBS**
ghpupf Wholesale price index, agricultural products PJLANS**
tl-neig Negotiated standard wage rate index, industry, 1976 = 100 YNIBBS**
pworld-ne World market prices, HWWA Index, total exclusive energy WPNOES**
pworld-e World market prices, HWWA Index, energy, $ basis WPNERS**
pworld-o World market prices, HWWA Index, crude oil, $ basis WPNROS**
tl-fv Negotiated standard wage rate index, tourism, 1966 = 100 YTFBBS**
tl-ha Negotiated standard wage rate index, trades, 1966 = 100 YTHBBS**
tl-ba Negotiated standard wage rate index, banking and insurance, 1966 = 100 YTKNNS**
r$3m 3-month interest rate on the Euro-$ market, average of daily quotes WREU3N**
emp Employees, total number in persons ABSEGM**
ghp-e Wholesale price index, mineral oil exclusive VAT, 1986 = 100 PJMOES**
pkw Registrations of new vehicles, total DPSPUM**
realwk Index of Austria’s Price Competitiveness (until December 1998 FTRTTS**

Index of Effective Exchange Rates of the Schilling)
naecht Tourism, total overnight stays. DFJGGM**
m1 Monetary aggregate M1; from January 1999 exclusive euro area currencies OeNB data
m3 Monetary aggregate M3, from January 1999 exclusive euro area currencies OeNB data
credit Loans to private sector OeNB data

* Bank of International Settlements Databank
** Austrian Institute of Economic Research Databank
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C APPENDIX: Results of the leading indi-

cator analysis

The tables below show the results of the prefitting regressions (see equation
8in appendix A) for various forecasting horizons. The F-statistic is the result
of comparing the residual sum of squares of a regression with and without
the indicator variable. If the corresponding probability of type 1 error is
small the hypothesis of explanatory power of the indicator variable for the
subindexes is not rejected.

The numbers in parenthesis in the tables below indicate the order of dif-
ferencing. For instance, (1,12) indicates first order differencing and seasonal
differencing at lag 12. The indicator variables for the other price indices
required unit and seasonal differencing at lag 12 except for the spread, the
long term and short term interest rates, the real exchange rate and price
expectations, which were integrated of order 1.

Table 7: Energy Index

Indicator F-statistic p-value F-statistic p-value
1 lead 3 leads

ghp-e(1,12) 2.12 0.13 2.87 0.06
vpide(1,12) 2.64 0.08 2.09 0.13
orders(1,12) 2.43 0.09 2.04 0.13

p-world-e(1,0) 3.16 0.05 1.38 0.25
spread(1,0) 1.55 0.22 1.86 0.16
credit(1,12) 1.05 0.35 1.4 0.25

tl(1,12) 3.24 0.04 2.95 0.06
emp(1,12) 3.19 0.04 2.69 0.07
m1(1,12) 3.97 0.02 2.48 0.09

realex(1,0) 2.79 0.07 1.97 0.14
rlong(1,0) 3.33 0.04 3.66 0.03
rshort(1,0) 1.21 0.3 1.21 0.3
ip(1,12) 1.21 0.3 0.68 0.51
ex(1,0) 1.98 0.14 1.53 0.22
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Table 8: Energy Index

Indicator F-statistic p-value F-statistic p-value
6 leads 12 leads

ghp-e(1,12) 3.35 0.04 0.72 0.49
vpide(1,12) 1.14 0.32 1.17 0.31
orders(1,12) 1.65 0.2 1.69 0.19

p-world-e(1,0) 2.01 0.14 3.08 0.05
spread(1,0) 2.19 0.12 1.61 0.2
credit(1,12) 1.4 0.25 1.14 0.32

tl(1,12) 2.16 0.12 1.8 0.17
emp(1,12) 2.5 0.09 2.77 0.07
m1(1,12) 1.93 0.15 2.1 0.13

realex(1,0) 1.78 0.17 2.07 0.13
rlong(1,0) 3.84 0.02 3.18 0.05
rshort(1,0) 2.82 0.06 2.84 0.06
ip(1,12) 1.46 0.24 0.57 0.57
ex(1,0) 1.12 0.33 1.9 0.15

Table 9: Services Index

Indicator F-statistic p-value F-statistic p-value
1 lead 3 leads

vpide(1,12) 0.49 0.61 1.02 0.36
p-world-e(1,0) 1.00 0.37 0.75 0.47
spread(1,0) 2.49 0.09 1.89 0.16
credit(1,12) 1.09 0.34 1.11 0.33

tl(1,12) 1.45 0.24 0.86 0.43
m1(1,12) 0.54 0.58 2.09 0.13

realex(1,0) 0.89 0.41 1.83 0.17
rlong(1,0) 1.80 0.17 1.18 0.31
rshort(1,0) 1.89 0.16 0.80 0.45
ip(1,12) 3.12 0.05 3.98 0.02
ex(1,0) 1.27 0.28 1.46 0.24

naecht(1,12) 2.88 0.06 0.67 0.51
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Table 10: Services Index

Indicator F-statistic p-value F-statistic p-value
6 leads 12 leads

vpide(1,12) 1.50 0.23 0.41 0.66
p-world-e(1,0) 0.96 0.39 0.23 0.79
spread(1,0) 2.47 0.09 2.33 0.10
credit(1,12) 0.75 0.47 0.13 0.88

tl(1,12) 2.11 0.13 0.93 0.40
m1(1,12) 0.58 0.56 0.07 0.94

realex(1,0) 2.34 0.10 2.58 0.08
rlong(1,0) 1.46 0.24 2.58 0.08
rshort(1,0) 1.02 0.36 1.21 0.30
ip(1,12) 1.41 0.25 0.61 0.55
ex(1,0) 1.92 0.15 2.59 0.08

naecht(1,12) 0.25 0.78 1.22 0.30

Table 11: Unprocessed Food Index

Indicator F-statistic p-value F-statistic p-value
1 lead 3 leads

vpide(1,12) 1.38 0.26 2.66 0.07
spread(1,0) 0.86 0.42 1.58 0.21
credit(1,12) 1.29 0.28 1.48 0.23

tl(1,12) 0.77 0.47 0.30 0.74
m1(1,12) 1.62 0.20 1.30 0.28

realex(1,0) 0.60 0.55 1.10 0.34
rlong(1,0) 0.22 0.80 2.15 0.12
rshort(1,0) 0.86 0.42 0.84 0.43
ip(1,12) 0.84 0.44 1.26 0.29
ex(1,0) 0.93 0.40 0.37 0.69
dsdlm3 1.66 0.19 1.29 0.28

ghpupf(1,12) 0.95 0.39 1.10 0.34
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Table 12: Unprocessed Food Index

Indicator F-statistic p-value F-statistic p-value
6 leads 12 leads

vpide(1,12) 3.29 0.04 4.96 0.01
spread(1,0) 0.63 0.53 0.54 0.58
credit(1,12) 3.92 0.02 3.12 0.05

tl(1,12) 1.18 0.31 1.88 0.16
m1(1,12) 1.36 0.26 1.74 0.18

realex(1,0) 1.00 0.37 0.50 0.61
rlong(1,0) 0.28 0.76 0.19 0.83
rshort(1,0) 0.96 0.39 1.95 0.15
ip(1,12) 2.40 0.10 2.48 0.09
ex(1,0) 0.52 0.60 0.53 0.59

m3(1,12) 4.00 0.02 1.61 0.21
ghpupf(1,12) 3.25 0.04 3.84 0.02

Table 13: Processed Food Index

Indicator F-statistic p-value F-statistic p-value
1 lead 3 leads

credit(1,12) 1.89 0.16 1.98 0.14
vpide(1,12) 0.65 0.52 3.21 0.04

tl(1,12) 1.86 0.16 2.02 0.14
m1(1,12) 3.39 0.04 2.90 0.06

realex(1,0) 0.84 0.43 1.47 0.23
rlong(1,0) 0.12 0.89 1.68 0.19
spread(1,0) 0.86 0.43 1.94 0.15

ip(1,12) 1.12 0.33 2.86 0.06
ex(1,0) 0.50 0.61 1.88 0.16

rshort(1,0) 1.20 0.31 2.93 0.06
ghpupf(1,12) 2.00 0.14 1.21 0.30

m3(1,12) 1.18 0.31 2.42 0.09
pexp(1,0) 1.82 0.17 4.25 0.02

28



Table 14: Processed Food Index

Indicator F-statistic p-value F-statistic p-value
6 leads 12 leads

credit(1,12) 2.82 0.06 2.06 0.13
vpide(1,12) 4.65 0.01 2.73 0.07

tl(1,12) 2.50 0.09 2.63 0.08
m1(1,12) 4.80 0.01 2.79 0.07

realex(1,0) 2.02 0.14 2.69 0.07
rlong(1,0) 2.67 0.07 3.12 0.05
spread(1,0) 2.87 0.06 2.74 0.07

ip(1,12) 3.50 0.03 4.34 0.02
ex(1,0) 2.38 0.10 2.31 0.10

rshort(1,0) 3.40 0.04 6.94 0.00
ghpupf(1,12) 1.66 0.19 2.53 0.08

m3(1,12) 3.39 0.04 3.14 0.05
pexp(1,0) 5.44 0.01 3.31 0.04

Table 15: Headline HICP

Indicator F-statistic p-value F-statistic p-value
1 lead 3 leads

vpide(1,12) 1.52 0.22 1.62 0.20
spread(1,0) 0.41 0.67 0.66 0.52
credit(1,12) 2.47 0.09 2.74 0.07

tl(1,12) 1.33 0.27 1.42 0.25
m1(1,12) 1.22 0.30 3.40 0.04
m3(1,12) 0.79 0.46 2.12 0.12

realex(1,0) 1.27 0.28 0.88 0.42
ip(1,12) 0.47 0.63 0.68 0.51
ex(1,0) 1.92 0.15 1.56 0.21

pexp(1,0) 1.53 0.22 1.34 0.27
emp(1,12) 1.57 0.21 2.37 0.10
ghp-e(1,12) 0.93 0.40 1.40 0.25
naecht(1,12) 0.40 0.67 0.66 0.52
orders(1,12) 0.75 0.47 0.94 0.40

p-world-e(1,0) 1.02 0.36 0.80 0.45
pkw(1,12) 1.58 0.21 1.38 0.26
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Table 16: Headline HICP

Indicator F-statistic p-value F-statistic p-value
6 leads 12 leads

vpide(1,12) 1.57 0.21 1.74 0.18
spread(1,0) 1.25 0.29 0.98 0.38
credit(1,12) 2.03 0.14 1.19 0.31

tl(1,12) 1.34 0.27 1.43 0.24
m1(1,12) 1.78 0.17 0.59 0.55
m3(1,12) 2.05 0.13 0.56 0.57

realex(1,0) 0.82 0.44 1.40 0.25
ip(1,12) 1.21 0.30 1.10 0.34
ex(1,0) 1.56 0.22 1.16 0.32

pexp(1,0) 1.11 0.33 1.37 0.26
emp(1,12) 1.66 0.19 1.50 0.23
ghp-e(1,12) 2.44 0.09 1.17 0.32
naecht(1,12) 0.80 0.45 0.49 0.61
orders(1,12) 0.75 0.48 1.11 0.33

p-world-e(1,0) 3.00 0.05 2.07 0.13
pkw(1,12) 0.78 0.46 2.52 0.09
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