Editorial Board of the Working Papers

Eduard Hochreiter, Coordinating Editor
Ernest Gnan,
Guenther Thonabauer
Peter Mooslechner
Doris Ritzberger-Gruenwald

Statement of Purpose

The Working Paper series of the Oesterreichische Nationalbank is designed to disseminate and to provide a platform for discussion of either work of the staff of the OeNB economists or outside contributors on topics which are of special interest to the OeNB. To ensure the high quality of their content, the contributions are subjected to an international refereeing process. The opinions are strictly those of the authors and do in no way commit the OeNB.

Imprint: Responsibility according to Austrian media law: Guenther Thonabauer, Secretariat of the Board of Executive Directors, Oesterreichische Nationalbank
Published and printed by Oesterreichische Nationalbank, Wien.
The Working Papers are also available on our website:
http://www.oenb.co.at/workpaper/pubwork.htm
In this paper, the authors model loans to households and to non-financial corporations as well as their relation to interest rates and demand variables for Austria, Germany, the Netherlands and the United Kingdom. Credit aggregates are modeled using a Markov-switching vector autoregressive model, which allows testing as to whether shocks to the economy have stronger effects during tight credit regimes or economic downturns. The analysis of the above-mentioned countries makes it possible to assess the differences in the amplifying and asymmetric effects of credit aggregates between market-based and bank-based financial systems.

September 20, 2004
Modeling Credit Aggregates

Sylvia Kaufmann

and

Maria Teresa Valderrama

September 2004

Abstract

The purpose of this paper is to model both loans to households and to non-financial corporations as well as their relation to interest rates and demand variables for Austria, Germany, the Netherlands and the United Kingdom. Credit aggregates are modeled using a Markov-switching vector autoregressive model, which allows testing as to whether shocks to the economy have stronger effects during tight credit regimes or economic downturns. The analysis of the above-mentioned countries makes it possible to assess the differences in the amplifying and asymmetric effects of credit aggregates between market-based and bank-based financial systems.

Keywords Asymmetry and amplification, credit aggregates, market-based and bank-based financial systems

JEL classification C32, E44, E51

The views presented here do not necessarily reflect those of the OeNB.

1 We would like to thank Leo de Haan, Elmar Stoess and Andreas Worms for providing us with Dutch and German series. We also thank participants for comments on an earlier version of this paper presented in seminars at the ECB, the Bank of Canada, the Bundesbank and the Annual Meeting of the Austrian Economic Association. Moreover, we thank an anonymous referee for his/her feedback. We would also like to thank participants at the DNB Seminar, at the 21st Symposium on Banking and Monetary Economics and at ECOMOD 2004 for their comments. All remaining errors are ours.

2 Oesterreichische Nationalbank, Economic Studies Division, Otto-Wagner-Platz 3, 1090 Vienna, Austria, Phone: +43 1 40420 7222, Fax: +43 1 40420 7299; E-mail: Sylvia.Kaufmann@oeb.at.

3 Oesterreichische Nationalbank, Economic Analysis Division, Otto-Wagner-Platz 3, 1090 Vienna, Austria, Phone: +43 1 40420 7412, Fax: +43 1 40420 7499; E-mail: Maria.Valderrama@oeb.at.
1. Introduction

The purpose of this paper is to model credit aggregates for both households and non-financial corporations and their relation to interest rates and demand variables for four member countries of the European Union. Credit aggregates not only play a major role in the transmission mechanism of monetary policy (Bernanke and Blinder, 1988) but may also be important indicators of the monetary stance and liquidity conditions at the national level. This may be especially relevant for countries with an exchange rate peg or for members of a monetary union, for which interest rate levels or “national” monetary aggregates may lose their leading indicator properties, while “national” credit aggregates may still have a more direct impact on national spending and therefore on national inflation. Moreover, as Borio and White (2004) and Borio and Lowe (2004) have shown, credit aggregates can also be useful in identifying the possible buildup of financial imbalances in the economy, which should be taken into account by policymakers. Despite their importance there are very few studies that focus on credit aggregates and even fewer which cover countries like Germany and Austria. This paper fills this gap by presenting evidence for the role of credit aggregates in the transmission mechanism for Austria, Germany, the Netherlands and the United Kingdom (UK).4

On the other hand, money and credit and their relation to business cycles have been explored and outlined in a large body of theoretical models (Stiglitz and Weiss, 1981, Scheinkman and Weiss, 1986, Bernanke and Gertler, 1989, Kiyotaki and Moore, 1997a and 1997b, Boissay, 2001). Despite their different approaches, all these models predict that, due to the existence of asymmetric information, credit markets propagate shocks to the economy. Moreover, they show that the procyclicality of bank lending results in an amplification of business cycles that is stronger during recessions and, thus, leads to asymmetric effects of monetary policy.

4 See Jacobs and Kakes (2000) and Sensier et al. (2002) for similar studies conducted on the Netherlands and the UK.
Thus, the mechanisms described in these theoretical models imply that credit aggregates should be modeled in a nonlinear framework.5 To capture asymmetries, we introduce a Markov-switching vector autoregressive model (MS-VAR), in which parameters switch according to an unobservable state variable. The state variable is assumed to capture changing credit or economic regimes and is estimated along with the model parameters.

For each country, we analyze two credit systems, one for loans to households and one for loans to firms, as these two aggregates are determined by different spending components and may be differently affected by asymmetric informational problems and financial constraints. The countries we analyze are representative of both large and small countries within the European Union, with either market-based6 or bank-based7 financial systems. This allows us to examine whether asymmetries propagated by credit aggregates depend on the type of financial system. For example, credit tightening during an economic downturn may be more severe in market-based than in bank-based systems as in the latter the existence of lending relationships allows borrowers to smooth liquidity shocks over the cycle.

To summarize: The objectives of this paper are, first, to model credit aggregates, which have been rather neglected in the literature, especially as regards European countries; second, to use a nonlinear methodology in order to capture the asymmetric effects predicted by theoretical models and by the evidence at the micro level; third, to separate lending to households from lending to non-financial corporations; and finally, to draw up models for four countries with different financial systems, which will allow us to investigate asymmetric effects related to differences between market-based and bank-based financial systems.

5 See below for a detailed account of these models.
6 The UK and the Netherlands.
7 Germany and Austria.
The paper is organized as follows: The next section motivates the use of nonlinear modeling based on theoretical models of credit cycles. Section three describes some stylized facts about the evolution of credit aggregates and the institutional frameworks of the four countries discussed in this study. Section four introduces the MS-VAR model and the estimation method. Section five presents our results. Section six compares the results across countries. Conclusions follow.

2. Nonlinear effects of credit aggregates – Theory and evidence

Models that focus on the credit view of monetary policy transmission (as opposed to the ‘money’ or monetarist view) were introduced among others by Bernanke and Blinder (1988) and Bernanke and Gertler (1989). In a simple neoclassical framework, these authors describe the financial accelerator effect by showing how business cycles may emerge or may be amplified through borrowers’ balance sheets. During business cycle upturns, borrowers’ net worth improves and the costs of external finance decrease, which results in higher investment. Empirical evidence for the United States at the aggregate level for this transmission channel is found in Bernanke and Blinder (1989), Kashyap et al. (1993), Bernanke and Gertler (1995) and Christiano et al. (1996). These authors find that credit aggregates and the composition of external funds react to liquidity shocks and in turn affect investment behavior.

Asymmetric effects over time propagated through the credit market were introduced by Kiyotaki and Moore (1997a, 1997b) and Kocherlakota (2000). According to Kiyotaki and Moore (1997a, 1997b) higher debt default during a recession leads to exaggerated responses of the economy to an initial liquidity shock. In a neoclassical framework which uses a tangible asset (land) as a production factor Kocherlakota (2000) demonstrates that credit constraints lead to asymmetric responses in output. Positive or small negative transitory income shocks do not affect output, while large negative shocks lead to a persistent decrease in output. This propagation mechanism is amplified when land is used as collateral.
Models which explicitly switch between equilibria due to borrowing constraints or adverse selection problems in the credit market are presented by Scheinkman and Weiss (1986) and Azariadis and Smith (1998). Borrowing constraints affect economic activity via the distribution of wealth. As this distribution evolves endogenously, exogenous shocks lead to a considerable cyclical economic activity. The model solution in Azariadis and Smith leads to multiple equilibria; whereby the switching between these equilibria can be described as a Markov-switching process.

In summary, these models imply that monetary policy-induced shocks or any other shocks have asymmetric effects on the economy. These effects arise from the fact that although lending is procyclical and therefore renders binding credit constraints during a downturn, it does not have an equally positive symmetric effect during the upturn.

For the countries investigated in this paper, empirical evidence at the individual bank and firm level tends to confirm both the relevance of credit aggregates for the transmission mechanism and the asymmetric propagation of shocks through credit markets to the real economy. Frühwirth-Schnatter and Kaufmann (2004) and Kaufmann (2003) have studied the behavior of bank lending and find that it reacts asymmetrically to interest rate changes over time in Austria. Valderrama (2001 and 2003a) and Wesche (2000) provide evidence for the existence of a financial accelerator effect in Austria using firm-level data. Vermeulen (2002), Chatelain et al. (2003) and von Kalckreuth (2003) show that internal funds are significant determinants of investment in Germany. Similar evidence for the Netherlands is presented by Van Ees and Garretsen (1994) and Van Ees et al. (1998), who find that liquidity and debt constraints have a significant impact on Dutch business investment. Guariglia (1999) uses firm-level data for the UK and shows a significant link between financial variables and inventory investment. Moreover, the effect on investment is more pronounced in the case of firms with weak balance sheets during recessions and

8 One in which economic activity is slowing, interest rates are falling and credit constraints are binding, and another which is characterized by accelerating growth and rising interest rates accompanied
periods of tight monetary policy. Hall (2001) concludes that a business cycle model for the UK incorporating financial accelerator effects is consistent with observed features of corporate real and financial behavior in previous downturns.

3. Credit aggregates in market-based and bank-based financial systems

Our decision to model credit aggregates for four EU countries with different financial systems allows us to investigate whether the role of credit aggregates in the transmission mechanism depends on their institutional framework. We expect that due to the existence of the “house bank” principle found in bank-based systems, credit constraints and asymmetric propagation through credit markets may be less severe than in market-based systems.

The “house bank” principle allows both lenders and borrowers to overcome some of the asymmetric information problems found in imperfect capital markets by building long-standing relationships. These lending relationships allow the borrower to be less dependent on internal funds, since the lending institution will provide its client with liquid funds even during an economic downturn. As a result, the borrower can smooth spending decisions over the cycle, since lending, in this case, is mostly demand driven.9

Evidence at the firm level confirms that the advantage of such lending relationships consists in a lower dependence on internal funds and not in lower capital costs.10 At the aggregate level, the presence of relationship lending should translate into smoother business cycle fluctuations. To test this hypothesis, we compare results for Austria, Germany, the Netherlands and the UK, which are two small and two large countries in the EU, representative of both bank-based and market-based financial systems.

9 See Ongena and Smith (1998) and Boot (2000) for a more detailed account of possible effects of lending relationships.
Austria and Germany have very similar banking systems, which are characterized by narrow lending relationships.11 In Europe, the United Kingdom is widely known to be a market-based financial system with the highest market capitalization in Europe, while the ratio of loans to non-financial corporations to GDP in the UK is low compared to other EU countries. It is not easy to find a small European country that has a market-based system. In this context, the Netherlands, which show a high share of equity issues and a large market capitalization compared to most other countries in Europe, are the most suitable candidate. Ranking behind the UK and Luxembourg, market capitalization in the Netherlands is the third-highest among the former EU-15.12 Although lending relationships may also be present in the Netherlands and the UK,13 at the aggregate level the effect of shocks should be smaller than in Austria and Germany, due to the smaller loans-to-GDP ratio in the latter two countries.

Graphs 1 and 2 seem to confirm this perception. Owing to the rapid liberalization of bank lending to consumers in the UK and the Netherlands during the 1990s, the ratio of loans to GDP for the household sector in these two countries is higher than in Austria and Germany. By contrast, the ratio of loans to GDP for non-financial corporations is much higher in Austria and Germany and relatively low for the UK, while the Netherlands rank somewhere in between. This is consistent with the higher market capitalization observed in both the UK and the Netherlands.

4. Econometric model and estimation method

In order to capture the nonlinear dynamics predicted by theoretical models we use a Markov-switching vector autoregressive (MS-VAR) model, which allows for regime-switching coefficients. The advantage of an MS-VAR model is that it enables us to

12 Data for 2000. See Rajan and Zingales (2003).

estimate dates of regime shifts and model parameters simultaneously. Thus, a priori
knowledge about the dates at which the economy shifts into e.g. a tight credit regime is not
necessary, which is an advantage if we take into account that the variable determining
regime shifts and their timing are not observable with certainty.

The most general specification of an MS-VAR model allows all model parameters to
depend on the unobservable state s_t:

$$
y_t = v(s_t) + A_1(s_t)y_{t-1} + A_2(s_t)y_{t-2} + \ldots + A_q(s_t)y_{t-q} + \varepsilon_t,
$$

$$
\varepsilon_t \sim i.i.d. N(0, \Sigma(s_t)),
$$

where s_t takes on one out of K values, $s_t = k, k = 1, K$, and is assumed to follow a first-
order Markov process. The probability that regime j prevails in t depends on the regime
prevailing in $t-1$, $\Pr(s_t = j|s_{t-1} = i) = \eta_{ij}$, and is assumed to be exogenous and constant. In
a K-state model there are $K \times K$ of such conditional transition probabilities, which are
represented in the transition matrix η:

$$
\eta = \begin{bmatrix}
\eta_{11} & \eta_{12} & \Lambda & \eta_{1K} \\
\eta_{21} & \eta_{22} & \Lambda & \eta_{2K} \\
M & M & O & M \\
\eta_{K1} & \eta_{K2} & \Lambda & \eta_{KK}
\end{bmatrix},
$$

with the obvious restriction $\sum_{j=1}^{K} \eta_{ij} = 1$.

The estimation of model (1) yields an inference on all model parameters and the state
variable s_t as well. Here, the estimation is cast into a Bayesian framework and the
inference is obtained using Markov chain Monte Carlo (MCMC) simulation methods.
Although maximum likelihood is feasible (Krolzig, 1997), MCMC methods circumvent
problems that may arise when the likelihood is maximized numerically. In systems
involving more than two states and a larger number of variables, for instance, one often
encounters boundary problems for the transition probabilities if these approach zero or
one. Moreover, the maximization proves to be sensitive to starting values.
The random permutation sampler (Frühwirth-Schnatter, 2001) used here is based on the Gibbs sampler and allows the exploration of the whole unconstrained posterior distribution of the model parameters. If a suitable restriction identifying the states is not known a priori, we may find an adequate one by post-processing and visualizing the output of the sampler. In general, it is sufficient to set reasonable starting values for the sampler to converge to the steady-state posterior distribution of the model parameters and of the state variable (Tierney, 1994).

To briefly describe the estimation procedure, we gather all model parameters into the vector θ for notational convenience, $\theta = (\nu(1),...,\nu(K), A_1(1),...,A_q(K), \Sigma(1),...,\Sigma(K), \eta)$. Conditional on s_t, the likelihood of the data can be factorized as:

$$L(y^T | \theta, s_t) = \prod_{t=1}^{T} f(y_t | y^{t-1}, \theta, s_t),$$

(3)

where the observation density $f(y_t | y^{t-1}, \theta, s_t)$ is multivariate normal:

$$f(y_t | y^{t-1}, \theta, s_t) = \Sigma(s_t)^{-1/2} (2\pi)^{-p/2} \exp\left\{-\frac{1}{2} (y_t - \mu(s_t))' \Sigma(s_t)^{-1} (y_t - \mu(s_t))\right\},$$

(4)

with $\mu(s_t) = \nu(s_t) + A_1(s_t)y_{t-1} + A_2(s_t)y_{t-2} + ... + A_q(s_t)y_{t-q}$ and $y^{t-1} = (y_{t-1}, y_{t-2}, ..., y_1)$.

Further, the prior distribution of $s^T = (s_T, s_{T-1}, ..., s_0)$ depends only on the relevant transition probabilities and its density is proportional to:

$$\pi(s^T | \eta) \propto \prod_{t=1}^{T} \eta_{s_t,s_{t-1}} \pi(s_0) = \prod_{j=1}^{K} \prod_{i=1}^{K} \eta_{ij}^{N_{ij}} \pi(s_0), \text{ with } N_{ij} = \# \{s_t = j | s_i = i\}.$$

Finally, the specification of the prior distribution of the model parameters, $\pi(\theta)$, completes the Bayesian setup:

14 A common restriction which allows to discriminate between the states would be e.g. that $\nu_1(1) < \nu_1(2)$, meaning that the first regime would relate to below-average growth periods in the first variable of the system, while the second regime would relate to above-average growth rate periods.
• The VAR parameters $\beta = (\nu(1), \ldots, \nu(K), A_1(1), \ldots, A_q(K))$, the covariance matrices $\Sigma = (\Sigma(1), \ldots, \Sigma(K))$ and the transition probabilities η are independent a priori, $\pi(\theta) = \pi(\beta)\pi(\Sigma)\pi(\eta)$.

• β is assumed multivariate normal $N(b_0, B_0^{-1})$. For the constant terms $(\nu(1), \ldots, \nu(K))$ we assume a noninformative prior that is independent of the autoregressive parameters; B_0^{-1} is therefore block-diagonal. The prior covariance matrix of the autoregressive parameters $A_1(1), \ldots, A_q(K)$ is designed in a way that takes into account the possible different scales of the system variables and tightens the prior for the standard errors of higher order lags (see Litterman, 1986, and Hamilton, 1994, pp.360–362).

• $(\Sigma(1), \ldots, \Sigma(K))$ are independent a priori and each have an inverse Wishart distribution, $\Sigma^{-1}(k) \sim W(\nu_0, S_0)$, $k = 1, \ldots, K$.

• η_1, \ldots, η_K are independent a priori and are assumed to have a Dirichlet prior distribution, $\eta_k \sim D(e_{k1}, \ldots, e_{kk})$, $k = 1, \ldots, K$.

The inference on the joint posterior distribution of the model parameters and the state variable, $\pi(\theta, s^T | y^T)$, is then obtained by successively simulating the parameters and the path of the state variable from their conditional posterior distribution. The sampling scheme includes the following steps (see appendix B for details):

Step 1. $\pi(\beta | y^T, s^T, \Sigma)$, simulating the VAR parameters given the data, the state variable and the covariance matrices out of a multivariate normal distribution. We check at each iteration whether the simulated parameters define a stationary system. If this is not the case, we reject the draw and retain the current values for the next sampling step.
Step 2. $\pi(\Sigma \mid y_T, s_T, \beta)$, simulating the covariance matrices given the data, the state variable and the VAR parameters out of K independent Wishart distributions.

Step 3. $\pi(s_T \mid y_T, \theta)$, simulating the state variable given the data and all model parameters using the multi-move sampler described in Chib (1996).

Step 4. $\pi(\eta \mid s_T)$, simulating the transition probabilities, which in fact depend only on s_T, from K independent Dirichlet distributions.

A permutation step completes each iteration of the sampler, in which the simulated parameters are permuted randomly to explore the unconstrained posterior distribution. In the presence of two states, this amounts to an interchange of all state-specific parameters and the state variable with a probability of 0.5, leaving them unchanged otherwise:

$$(\beta(1), \beta(2)) := (\beta(2), \beta(1)), \quad (\Sigma(1), \Sigma(2)) := (\Sigma(2), \Sigma(1)), \quad s_T^* = 3 - s_T,$$

$\eta_{ij} := \eta_{3-i,3-j}, \quad i, j = 1, 2, \text{ if } U \leq 0.5$, where U is drawn from the uniform distribution.

Based on explorative tools like scatter plots and marginal posterior distributions of the simulated values of the state-specific parameters, we can then find a restriction that identifies the states\(^\text{15}\) and according to which we reorder all simulated values to obtain the posterior inference on the model. With these tools, we also find a parsimonious representation of the system, in which parameters that are not switching or which are insignificant are restricted to zero (see appendix C).

To assess our model specification, we estimate the marginal likelihoods, with which we also can test the switching specification against a linear alternative by means of the Bayes factor. The marginal likelihood is estimated using the optimal bridge sampler proposed by Frühwirth-Schnatter (2004; see also appendix C for technical details).

\(^\text{15}\) In our empirical investigation, it turned out that for some systems one of the constants, in particular the growth rate of consumption or the growth rate of investment, could be used to identify the states. In these cases, the states relate primarily to periods of above- and below-average growth in one variable. In other systems, the states can be discriminated on the basis of an autoregressive coefficient (see appendix D).
The appropriate parsimonious and identified model is then used to compute state-dependent impulse response functions, the structural model being identified by means of a Cholesky decomposition of the state-specific covariance matrix. We obtain the distribution (mean and confidence interval) of the impulse responses by using draws of the MCMC simulations of the model parameters and by computing the respective impulse responses.

5. Results

(a) Data and model selection

The model outlined in section 4 is used to build five-variable systems for loans to non-financial corporations and for loans to households. We use seasonally adjusted quarterly data covering the period from the first quarter of 1980 up to the last quarter of 2002. The effective sample period is adjusted to the country-specific data length (see graphs 3 to 10 in appendix A). Because of the well-known identification problem, we do not distinguish between credit demand and supply. The system which describes loans to non-financial corporations includes (in the following order): investment, imports, consumer price index (CPI), loans to non-financial corporations and the three-month interest rate.16 Household consumption, net disposable income, CPI, loans to households and the short-term interest rate form the second system. All variables are expressed in real terms (except for the CPI and the short-term interest rate) and in quarterly percentage growth rates. Interest rate changes are expressed in basis points (the first difference of the level times 100). The data is demeaned for computational purposes and we include dummy variables where required.17

First we estimate an unrestricted version of each model with two lags in which all parameters are switching. Based on this benchmark estimation, we restrict those

16 The choice of the short-term interest rate is driven by our interest in studying the effects of monetary policy and also by the fact that a substantial share of loans are extended with a variable interest rate clause. In particular for Austria, the data show that lending rates (unfortunately only available from 1995 onward) follow the short-term interest rate more closely than the long-term interest rate.

17
parameters that are not switching to be equal across regimes and those that are insignificant to be zero (see appendix C for the model selection procedure). The unrestricted and the final specifications (see appendix D) are also tested against a non-switching specification by means of marginal likelihoods, i.e. by using the Bayes factor.\(^1\)\(^8\) Table 1 also shows results for the case of an unrestricted switching and a non-switching (linear) specification of the VAR model with one lag. In all cases, the final specification is preferred to all others.

In the following, we discuss the results for each country. We expect to relate the posterior state probabilities to specific economic periods and/or to specific credit regimes. In addition, we expect to observe asymmetric responses to shocks between regimes. The difference in responses should be smaller for countries with bank-based financial systems (Austria and Germany).

Table 1: Log of the marginal likelihoods of various model specifications

<table>
<thead>
<tr>
<th></th>
<th>Austria</th>
<th>Germany</th>
<th>Netherlands</th>
<th>United Kingdom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loans to non-financial corporations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-switching 2 lags</td>
<td>-1334.37</td>
<td>-1384.90</td>
<td>-1295.41</td>
<td>-1757.52</td>
</tr>
<tr>
<td>Unrestricted 2 lags</td>
<td>-1321.79</td>
<td>-1383.04</td>
<td>-1264.11</td>
<td>-1736.24</td>
</tr>
<tr>
<td>Non-switching 1 lag</td>
<td>-1308.32</td>
<td>-1369.76</td>
<td>-1284.32</td>
<td>-1816.69</td>
</tr>
<tr>
<td>Unrestricted 1 lag</td>
<td>-1326.08</td>
<td>-1371.36</td>
<td>-1267.53</td>
<td>-1768.60</td>
</tr>
<tr>
<td>Final specification</td>
<td>-1291.24</td>
<td>-1351.26</td>
<td>-1230.40</td>
<td>-1724.98</td>
</tr>
<tr>
<td>Loans to households</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-switching 2 lags</td>
<td>-813.69</td>
<td>-882.97</td>
<td>-769.35</td>
<td>-1580.96</td>
</tr>
<tr>
<td>Unrestricted 2 lags</td>
<td>-734.21</td>
<td>-1027.06</td>
<td>-726.25</td>
<td>-1438.77</td>
</tr>
<tr>
<td>Non-switching 1 lag</td>
<td>-797.36</td>
<td>-853.27</td>
<td>-748.02</td>
<td>-1539.65</td>
</tr>
<tr>
<td>Unrestricted 1 lag</td>
<td>-762.64</td>
<td>-1051.17</td>
<td>-743.26</td>
<td>-1434.37</td>
</tr>
<tr>
<td>Final specification</td>
<td>-715.85</td>
<td>-799.92</td>
<td>-708.31</td>
<td>-1409.40</td>
</tr>
</tbody>
</table>

\(^1\) See the graphs in appendix A.
\(^8\) Twice the difference of the log of the marginal likelihood is interpretable on the same scale as the well-known likelihood ratio test with \(X^2\) distribution.
(b) Austria

The posterior state probabilities obtained from the system for loans to non-financial corporations are depicted in graph 11. Regime 1, depicted in the upper panel, can be broadly related to economic conditions. It prevails during the periods of 1982–1983, 1986–1987, 1992–1993, 1995–1997, 1998–1999 and from mid-2001 until the end of 2002. These correspond to the periods of below-average growth for Austria and other European countries identified by Kaufmann (2001, 2004) and are broadly consistent with the dating by the Centre for Economic Policy Research (CEPR) and that by Artis et al. (2003) for the euro area. The impulse responses shown in graph 12 (along with a 95% confidence interval) illustrate that lending is not a significant determinant of investment since in both regimes the response of investment to loan shocks is insignificant. The reaction of investment to interest rate shocks is almost identical in both regimes, but is somewhat more pronounced when economic growth is below average (regime 1). Loans react significantly positively to both investment and interest rate shocks in both regimes, responses once more being stronger in periods of below-average economic growth (regime 1). These results suggest that lending is demand driven rather than supply driven,19 which is consistent with the weak microeconomic evidence for a bank lending channel in Austria (Frühwirth-Schnatter and Kaufmann, 2004, and Kaufmann, 2003). Moreover, the much weaker response of loans to investment in periods of normal growth (regime 2) reflects the fact that substitutes to bank loans such as retained earnings are preferred during an economic upturn, which is also consistent with previous evidence of a balance sheet channel in Austria (Valderrama 2001, 2003a, 2003b). Since investment does not seem to react to lending in any regime, there is no evidence that credit aggregates amplify business cycles. These results reflect the fact that due to the “house bank” principle, investment does not face credit constraints in any regime.
The posterior state probabilities for the system of loans to households (see graph 13) are not obviously related to economic conditions as is the case for loans to firms. Regime 1 prevails during the periods of 1987–1988 and 1995–1996. The period of 1987–1988 corresponds to the beginning of the Austrian financial market’s liberalization and to an increase in real estate prices (Braumann, 2002). The period of 1995–1996 coincides with a strong increase in consumer credit as commercial banks were trying to compensate for the decrease in public debt-financed deficits. Regime 1 is thus characterized by periods of rapid loan growth. The impulse response functions (see graph 14) are very different from those of the firms’ loans system. In periods of normal loan growth (regime 2), consumption, as expected, reacts significantly positively to loan shocks. If credit conditions are lax (regime 1), however, the reaction is insignificant, which implies that consumption is not constrained by lack of financing during periods of lower lending growth. Consumption does not react significantly to interest rate shocks in any regime. Loans do not react significantly to consumption shocks or interest rate shocks in any regime. This could be explained by the fact that a large percentage of lending to households is used for residential investment.\(^{20}\)

(c) Germany

The posterior probabilities of regime 1 (graph 15) are indicative of economic slowdowns (1980–1982, 1984–1985, 1992–1993, 1995, 1997–1998, 2000–2002). The impulse responses in graph 16 show that investment does not react significantly to loans in either regime. Responses, however, tend to be more pronounced during a slowdown (regime 1). Thus, credit aggregates do not amplify negative shocks during the downturn. During periods of normal growth (regime 2), investment does react positively and marginally significant to interest rate shocks, while there is no significant response in

\(^{20}\) We define demand-driven lending as a situation in which lending reacts to spending and the reaction to an interest rate shock is not negative. When lending is supply driven, there is no reaction to spending and the reaction to an interest rate shock is negative.
regime 1. Loans, by contrast, respond positively to shocks to investment in both regimes, while their response to interest rate shocks is significant but differs between regimes: It is positive in regime 2 and negative in regime 1, indicating that bank lending is demand driven in periods of normal growth, which confirms the expected effect of the “house bank” principle.

The posterior state probabilities estimated for the system of loans to households (graph 17) reveal that regime 2 prevails most of the time until 1995 and, thus, a meaningful relation to economic conditions cannot be established. After 1995, however, the posterior state probabilities are similar to those found for non-financial corporations. Given the high growth in lending to households observed since 1995, regime 1 can be characterized as a state in which access to credit was not constrained for households. The response of consumption to lending (see graph 18), however, is insignificant in this regime, while it is negative and significant in periods in which credit seems to have been more restricted (regime 2). This result appears counterintuitive, but as the examined data includes mortgage loans, it may reflect the cautious behavior of German households, which tend to restrict consumption as their residential debt increases. Another reason for this result might be that consumer credit was not widely used until the mid-1990s. Consumption does not react significantly to shocks in the short-term interest rate in any regime. The responses of lending to consumption and to interest rate shocks are always insignificant in regime 1, while in times of credit restrictions (regime 2) lending reacts positively to consumption shocks and negatively to interest rate shocks. These responses correspond to the expected reaction of credit markets under the bank lending channel. However, we cannot observe the expected amplifying effect of lending on consumption.

Unfortunately, it is not possible to extract consumer credit from this data.
The posterior state probabilities for non-financial corporations reveal that one state prevails most of the time. It is therefore difficult to relate the states to business cycles in the Netherlands21 (graph 19). Regime 2, nevertheless, captures periods in which loan growth relative to investment growth was low (see graph 7) – which is characteristic of a state in which access to credit is constrained –, accompanied by falling interest rates.

An analysis of the impulse responses (graph 20) shows some asymmetries between regimes. Although investment always reacts positively and significantly to both loan and interest rate shocks, responses are significantly stronger in periods of restricted credit (regime 2). This indicates that credit markets may amplify shocks during regime 2, which is consistent with the financial accelerator view of the credit channel. Moreover, we observe that lending does not react significantly to investment shocks in periods of credit tightening (regime 2), whereas it reacts negatively to them in regime 1. When credit access is not constrained (regime 1), these findings are consistent with firms’ behavior in a market-based financial system, in which firms prefer to finance themselves by retained earnings or other sources of external funds.22 Although credit growth does not react to investment in regime 2, it cannot be classified as supply driven since lending reacts positively to interest rate shocks.23 The posterior state probabilities for loans to households depicted in graph 21 show that regime 1 can be related to the troughs of the business cycle as dated by the Dutch central bank (DNB 2002). Although most impulse responses are insignificant, we can observe some asymmetries across regimes (see graph 22). The reaction of consumption to loan shocks is insignificant in both regimes, but at the trough of the economic downturn (regime 1) the response is more pronounced and positive, indicating

21 See for example, DNB Quarterly Bulletin, December 2002.
22 See de Haan and Hinloopen (2003), who show that the most preferred financing form of Dutch firms is internal financing.
23 This is consistent with other evidence on the Netherlands, in which the bank lending channel is weakened due to customer relationships and banks’ possibility of isolating monetary shocks. See Kakes (1998), Jacobs and Kakes (2000) and de Haan (2003).
that credit aggregates on average have positive effects. This is confirmed by the insignificant reaction of loans to consumption and to interest rate shocks in regime 1. In regime 2, lending reacts positively to consumption shocks and negatively, to interest rate shocks. Overall, however, these responses are insignificant, which may be explained by the large share of mortgage loans in the credit series and by the fact that growth in household lending has been accompanied by a housing market boom, which is not captured in our model and does not have a direct effect on consumption.24

(e) United Kingdom

The posterior state probabilities obtained from the system for loans to non-financial corporations (graph 23) are closely correlated to economic conditions in the UK. Regime 1 nicely captures the recessions at the beginning of the 1980s and during the years from 1990 to 1993, as well as the most recent recession in 2001. Regime 2 consequently represents periods of “normal” economic conditions.

The response of investment (graph 24) to shocks in loans is positive and significant under normal economic conditions and insignificant during periods of economic slowdown. As in the case of bank-based systems, this implies, that lending does not amplify shocks during downturns. In periods of normal growth (regime 2), however, investment reacts significantly negatively to interest rate shocks, while its response is insignificant during times of economic slowdown (regime 1). Lending to non-financial corporations reacts significantly positively to investment and interest rate shocks in periods of normal growth, but insignificantly, during downturns. Finally, it is worth mentioning that in times of normal economic growth, the interest rate reacts positively to inflation shocks, while its response is insignificant during periods of economic slowdown. Overall, these results document the procyclicality of credit markets during normal economic conditions and a rather limited effect of both lending and monetary policy during downturns.

The regimes identified for the system of loans to households are not as clearly correlated to the business cycle as the model discussed earlier. Nevertheless, the posterior state probabilities of regime 1 (graph 25) can be described as weakly correlated to economic conditions until 1992. Regime 2 prevails most of the time after 1992, which coincides with periods of rapid credit growth relative to GDP (see graph 1).

Although the signs of responses differ across regimes, the response of consumption to both lending and interest rate shocks is insignificant in both regimes (graph 26). The response of loans to consumption shocks, however, is only insignificant during periods of low credit growth and positively significant in times of above-average credit growth (regime 2). While, as long as credit growth is moderate, lending reacts positively to interest rate shocks, it does not do so in periods of rapid credit growth. This is consistent with the rapid liberalization of the consumer credit market in an environment of falling interest rates, which implies that lending is demand driven in this regime (regime 2). The finding that consumption does not react significantly to loan shocks may reflect the fact that the increased lending observed since the mid-1990s have not been used to finance consumption but rather residential and financial investment.

6. **Rounding up: country comparisons**

In a set of tables, we now summarize our main findings and compare the results across countries. In table 2, we relate the estimated state probabilities to either economic or credit market conditions. In all countries except the Netherlands regime-switching in the system of non-financial corporations is driven by economic conditions, while for loans to households it can be related to credit market conditions. These results are consistent with the hypothesis that market imperfections, such as asymmetric information and moral hazard, affect households and firms in different ways. Lending to households is expected to be more strongly supply-side driven and therefore lending relationships matter less in this context. During the period under study, all countries experienced a process of financial liberalization, which was accompanied by a rapid growth of consumer credit. Presumably
this effect dominated bank lending during this period, which explains our findings that lending to households is not correlated to business cycles (except for the Netherlands). As Dutch firms can access capital markets more easily and prefer internal financing, lending is not a prime determinant of investment in the Netherlands.25

Table 2: Regime-switching driven by:

<table>
<thead>
<tr>
<th></th>
<th>Firms</th>
<th>Households</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>economic conditions</td>
<td>credit market conditions</td>
</tr>
<tr>
<td>DE</td>
<td>economic conditions</td>
<td>credit market conditions</td>
</tr>
<tr>
<td>NL</td>
<td>credit market conditions</td>
<td>economic conditions</td>
</tr>
<tr>
<td>UK</td>
<td>economic conditions</td>
<td>credit market conditions</td>
</tr>
</tbody>
</table>

The effects of lending on spending variables depend on the country-specific financial system (see table 3). As one would expect for bank-based systems, in which the house bank principle prevails, lending to non-financial corporations does not influence investment in either regime. Its effect is, however, asymmetric in market-based financial systems. In the systems for loans to households, we find exactly the opposite to be the case. Thus, as expected for bank-based financial systems, lending to non-financial corporations neither propagates nor amplifies shocks, while lending to households affects consumption. In particular for Austria, we observe that lending amplifies shocks in times of rapid credit growth, while it does not do so in the regime in which credit growth is subdued. The results for market-based financial systems show exactly the opposite situation. We find that lending to non-financial corporations has procyclical effects during “normal” economic conditions, whereas it has an insignificant effect on investment during downturns. Thus, even in market-based financial systems, bank lending shields businesses from tight liquidity conditions during an economic slowdown. The fact that consumption is not affected by credit markets in market-based systems may be due to our inclusion of mortgage loans and to the increase in private households’ financial investments. In bank-

25 See De Haan and Hinloopen (2003).
Based systems, we find that lending to households also increased in the second half of our sample in the wake of financial liberalization.

Table 3: Effects of lending on spending variables

<table>
<thead>
<tr>
<th></th>
<th>Firms</th>
<th>Households</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>insignificant (slightly negative in periods of subdued growth)</td>
<td>positive in periods of rapid loan growth, otherwise insignificant</td>
</tr>
<tr>
<td>DE</td>
<td>insignificant (positive and slightly stronger during economic slowdowns)</td>
<td>insignificant in periods of rapid loan growth, otherwise negative</td>
</tr>
<tr>
<td>NL</td>
<td>both positive but stronger during periods of constrained credit</td>
<td>insignificant (near troughs of the business cycles the response is stronger and positive)</td>
</tr>
<tr>
<td>UK</td>
<td>insignificant during recessions, otherwise positive</td>
<td>insignificant (stronger and positive during periods of normal loan growth)</td>
</tr>
</tbody>
</table>

Table 4 summarizes the responses of lending to shocks in the spending variables. The response of lending to non-financial corporations again depends on the country-specific financial system and corroborates the hypothesis that lending is mainly demand driven in bank-based systems. In the case of loans to households, it is not possible to draw a clear conclusion.

Table 4: Effects of spending variables on lending

<table>
<thead>
<tr>
<th></th>
<th>Firms</th>
<th>Households</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>positive, slightly stronger during periods of subdued economic growth</td>
<td>insignificant (equal across regimes)</td>
</tr>
<tr>
<td>DE</td>
<td>positive and equal across regimes</td>
<td>insignificant in periods of rapid loan growth, otherwise positive</td>
</tr>
<tr>
<td>NL</td>
<td>insignificant when credit is constrained, otherwise negative</td>
<td>insignificant near the troughs of the business cycle, otherwise positive</td>
</tr>
<tr>
<td>UK</td>
<td>insignificant during recessions, otherwise positive</td>
<td>positively significant during rapid loan growth, otherwise insignificant</td>
</tr>
</tbody>
</table>

We can also draw some conclusions on the relevance of the interest rate channel. In accordance with the credit view, the effect of interest rate changes on investment and consumption is in many cases insignificant (see table 5). We find, however, that the effects of interest rates differ between regimes. Thus, both credit aggregates and the interest rate have asymmetric effects on lending and on spending variables.
Table 5: Effects of interest rates on spending variables

<table>
<thead>
<tr>
<th></th>
<th>Firms</th>
<th>Households</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>slightly stronger during periods of subdued economic growth (positive)</td>
<td>insignificant (slightly positive during periods of rapid loan growth)</td>
</tr>
<tr>
<td>DE</td>
<td>positive and marginally significant under normal conditions, insignificant during slowdowns</td>
<td>insignificant (positive, slightly stronger during periods of rapid loan growth)</td>
</tr>
<tr>
<td>NL</td>
<td>both positive, but stronger during periods of constrained credit</td>
<td>insignificant (positive and stronger during troughs of the business cycles)</td>
</tr>
<tr>
<td>UK</td>
<td>negative under normal economic conditions, insignificant during recessions</td>
<td>insignificant (slightly negative during rapid loan growth)</td>
</tr>
</tbody>
</table>

While we can relate the effect on spending variables to the country-specific financial system, this is not possible for the reaction of lending to interest rate shocks. We obtain asymmetric responses of lending to households for all countries, while asymmetric effects in lending to non-financial corporations are only found for the two larger countries.

Table 6: Effects of interest rates on lending

<table>
<thead>
<tr>
<th></th>
<th>Firms</th>
<th>Households</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>positive, slightly stronger in periods of subdued economic growth</td>
<td>insignificant (slightly positive under normal conditions)</td>
</tr>
<tr>
<td>DE</td>
<td>positive under normal conditions, negative during slowdowns</td>
<td>insignificant in periods of rapid loan growth, otherwise negative</td>
</tr>
<tr>
<td>NL</td>
<td>positive and equal</td>
<td>insignificant at the troughs of the business cycle, otherwise negative</td>
</tr>
<tr>
<td>UK</td>
<td>significant, positive under normal conditions, insignificant during recessions</td>
<td>insignificant in periods of rapid loan growth, otherwise positive</td>
</tr>
</tbody>
</table>

7. Conclusions and policy implications

In this paper, we use a Markov-switching VAR model to test the following hypotheses, which were derived from theoretical models that relate credit aggregates to economic activity. First, due to market imperfections arising from asymmetric information, credit aggregates propagate or amplify shocks to the economy. Second, these imperfections become more stringent under certain economic conditions, e.g. during a recession or in periods of credit tightening. By comparing results for different countries, we are able to test whether these effects are stronger in market-based than in bank-based financial systems.
By analyzing households and non-financial corporations we are also in the position to assess the macroeconomic implications of our results.

We obtain evidence for two regimes in each of four countries, which, in countries where lending tends to be procyclical, can be related to periods of different economic conditions; in countries where lending is, for various reasons, unrelated to the business cycle, these regimes can be related to periods of different credit market conditions.

Moreover, we investigate whether shocks are propagated more strongly in one of the regimes. This is of particular interest as a stronger procyclical response during a downturn or during a period of tight credit conditions could have destabilizing effects on the economy.

For Austria and Germany, the two countries under review that represent bank-based financial systems, we find that lending to non-financial corporations propagates shocks to the economy, but does neither amplify them nor constrain economic activity in periods of subdued growth or tight liquidity conditions. This confirms the stabilizing role of the “house bank” principle. In the case of households, we find that lending is not binding. Here, evidence is not as clear-cut as mortgage loans are included in lending to households.

In the two countries representing market-based financial systems, namely the Netherlands and the UK, we find evidence for a financial accelerator effect in the firm sector and, particularly for the UK, a strong procyclical effect of credit markets during periods of economic recovery. The evidence in the household sector is less significant, as the increased lending level of the 1990s has been used to finance residential and financial investment rather than consumption.

In summary, the initial hypotheses are partially confirmed: Credit aggregates act as propagators and have nonlinear effects on the real economy. In bank-based systems the effects of shocks are smoothed, while in market-based systems we can observe an amplifying effect during periods of good economic conditions. However, the destabilizing effects of procyclical lending during recessions are not found in the UK, while in the case
of the Netherlands the evidence suggests that the slowdown in bank lending observed in
the last two years may have contributed to an even stronger slowdown in economic
activity.

These results have several interesting policy implications: The finding that lending is
mostly demand driven may throw some light on the procyclicality of lending and its
macroeconomic implications. The evidence of procyclicality during economic upturns
suggests that positive economic expectations (whether well-founded or not) may contribute
to a dangerous buildup of debt. However, the stronger procyclicality and implied instability
of market-based systems in comparison with bank-based systems predicted by theoretical
models is not confirmed in the case of the UK. It remains to be seen whether the fall in
lending experienced in the Netherlands during recent years will constrain investments of
non-financial corporations.
References

Borio, C. and P. Lowe, 2004, Securing sustainable price stability: should credit come back from the wilderness, paper presented at the ECB Workshop on “Asset Prices and Monetary Policy”

Braumann, B., 2002, Financial Liberalization in Austria, mimeo, Oesterreichische Nationalbank

DNB, 2000, Survey among Dutch mortgage-holders on the use of mortgage credit, Quarterly Bulletin, June.

Jacobs, J. and J. Kakes, 2000, Credit demand asymmetry in the Netherlands, Mimeo

Kakes, J. 1998, Monetary transmission and bank lending in the Netherlands, Mimeo

Kiyotaki, N. and J. Moore, 1997b, Credit chains, mimeo, London School of Economics.

Valderrama M.T., 2001, Balance Sheet and Bank Lending Channels: some evidence from Austrian firms, Oesterreichische Nationalbank, Focus on Austria, 3-4.
Valderrama, M.T., 2003b, Banking Structure and Investment in Austria: Some Empirical Evidence, Focus on Austria, 1.
Wesche, K., 2000, Is there a Credit Channel in Austria? The Impact of Monetary Policy on Firms’ Investment Decisions, Oesterreichische Nationalbank Working Papers No. 41.
8. Appendix A: Graphs

Graph 1. Ratio of loans to households to GDP

Graph 2. Ratio of loans to non-financial corporations to GDP
Graph 3. Austria. Loans to non-financial corporations

Investment (dashed), Imports (dotted), CPI (dash-dotted), Loans to firms (solid), Interest rate (solid +). Dummy variables: Loans (1995Q4) and CPI (1984Q1, VAT increase).

Graph 4. Austria. Loans to households

Graph 5. Germany. Loans to non-financial corporations

Graph 5: This graph shows the trend of loans to non-financial corporations in Germany from 1982 to 2002. The y-axis represents the level of loans, and the x-axis represents the years. The graph includes lines for investment (dashed), imports (dotted), CPI (dash-dotted), loans to firms (solid), and interest rate (solid +). Dummy variables include loans (1980Q4, 1990Q2, 1999Q1).

Graph 6. Germany. Loans to households

Graph 6: This graph illustrates the trend of loans to households in Germany from 1984 to 2002. The y-axis represents the level of loans, and the x-axis represents the years. The graph includes lines for households’ consumption (dashed), net disposable income (dotted), CPI (dash-dotted), loans to households (solid), and interest rate (solid +). Dummy variables include loans (1980Q4, 1999Q1).
Graph 7. Netherlands. Loans to non-financial corporations

Investment (dashed), Imports (dotted), CPI (dash-dotted), Loans to firms (solid), Interest rate (solid +). Dummy variables: Loans (1995Q4) and CPI (1984Q1, VAT increase).

Graph 8. Netherlands. Loans to households

Graph 9. United Kingdom. Loans to non-financial corporations

Investment (dashed), Imports (dotted), CPI (dash-dotted), Loans to firms (solid), Interest rate (solid +). Dummy variables: Loans (1995Q4) and CPI (1984Q1, VAT increase).

Graph 10. United Kingdom. Loans to households

Households’ consumption (dashed), Net disposable income (dotted), CPI (dash-dotted), Loans to households (solid), Interest rate (solid +).
Graph 11. Austria. Loans to firms, posterior state probabilities.

Graph 12. Austria. Loans to firms, IRF, regime 1 (dashed) and regime 2 (dotted).
Graph 13. Austria. Loans to households, posterior state probabilities.

Graph 14. Austria. Loans to households, IRF, regime 1 (dashed) and regime 2 (dotted).
Graph 15. Germany. Loans to firms, posterior state probabilities.

Graph 16. Germany. Loans to firms, IRF, regime 1 (dashed) and regime 2 (dotted).
Graph 17. Germany. Loans to households, posterior state probabilities.

Graph 18. Germany. Loans to households, IRF, regime 1 (dashed) and regime 2 (dotted).
Graph 19. Netherlands. Loans to firms, posterior state probabilities.

Graph 20. Netherlands. Loans to firms, IRF, regime 1 (dashed) and regime 2 (dotted).
Graph 21. Netherlands. Loans to households, posterior state probabilities.

Graph 22. Netherlands. Loans to households, IRF, regime 1 (dashed) and regime 2 (dotted).
Graph 23. United Kingdom. Loans to firms, posterior state probabilities.

Graph 24. United Kingdom. Loans to firms, IRF, regime 1 (dashed) and regime 2 (dotted).
Graph 25. United Kingdom. Loans to households, posterior state probabilities.

Graph 26. United Kingdom. Loans to households, IRF, regime 1 (dashed) and regime 2 (dotted).
Appendix B: Sampling scheme

This appendix derives the moments of the conditional posterior distributions of the model parameters and the state variables. To simplify notation, the MS-VAR in equation (1) is assumed to be of order one. The extension to higher order lags is straightforward. Equation (1) thus reads as:

\[y_t = v(s_t) + A(s_t)y_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim i.i.d. N(0, \Sigma(s_t)). \] \hfill (1')

To derive the posterior distribution of the model parameters, it is helpful to rewrite the model as:

\[y_t = y_{t-1}' \beta(s_t) + \varepsilon_t, \] \hfill (2')

where \(y_{t-1}' = (I_p \otimes [1 \ y_{t-1}]) \) and \(\beta(s_t) = \text{vec}([I_p \ A(s_t)]) \) with \(t_p \) being a \(p \times 1 \) vector of ones.

Step 1. Simulate \(\beta = \text{vec}(\beta(1), \ldots, \beta(K)) \) from \(\pi(\beta \mid y^T, s^T, \Sigma) \). Given \(s^T \), the posterior distribution is normally distributed \(N(b, B^{-1}) \), with \(B = Y'WY + B_0 \) and \(b = B^{-1}(Y'Wy + B_0b_0) \) and \(y = \text{vec}(y_2, K, y_T) \). The matrices \(Y \) and \(W \) are the predictor and the weighting matrices of model (2'), respectively:

\[
Y = \begin{bmatrix}
y_1'y_{1}^D_1 & \ldots & y_{1}'D_{1}^K \\
M & O & M \\
y_{T-1}'D_{T}^1 & \ldots & y_{T-1}'D_{T}^K
\end{bmatrix}, \quad W = \text{diag}(\Sigma(s_2)^{-1}, \ldots, \Sigma(s_T)^{-1}),
\]

where \(D_i^k = 1 \) if \(s_i = k \) and 0 otherwise. The draw is accepted, if the simulated parameter values define a stationary system; if this is not the case, we reject the draw and retain the current values to continue with the next sampling step.

Step 2. Simulate \(\Sigma = (\Sigma(1), \ldots, \Sigma(K)) \) from independent Wishart distributions, \(\Sigma^{-1}(k) \sim W(\nu_k, S_k) \), where \(\nu_k = \nu_0 + N_k \) and \(S_k = S_0 + \sum_{s_i = k} \varepsilon_i'\varepsilon_i \) with \(N_k = \# \{ s_i = k \} \).
Step 3. Simulate the state variable from the joint posterior distribution $\pi(s^T | y^T, \theta)$ with the multi-move sampler described in detail by Chib (1996). This involves two steps. In a first, forward-filtering step, we compute the filter distributions $\pi(s_t | y^t, \theta), t = 1, K, T,$ which can be factored as:

$$\pi(s_t | y^t, \theta) \propto f(y_t | y^{t-1}, s_t, \beta, \Sigma)\pi(s_t | y^{t-1}, \theta),$$

where the observation density $f(y_t | y^{t-1}, s_t, \beta, \Sigma)$ is the multivariate normal distribution given in equation (4). The second term is given by extrapolation:

$$\pi(s_t | y^{t-1}, \theta) = \sum_{s_{t-1}} \pi(s_{t-1} | y^{t-1}, \theta)\eta_{s_{t-1} s_t},$$

where the starting distribution $\pi(s_0)$, which we set to the unconditional distribution ρ of s_t, is given by the ergodic probabilities of the Markov process.

Then, the backward sampling step begins by sampling s_T from $\pi(s_T | y^T, \theta)$ and runs backwards to sample from $\pi(s_t | y^T, s_{t+1}, K, s_T, \theta)$ for $t = T - 1, K, 1$, which is given by

$$\pi(s_t | y^T, s_{t+1}, K, s_T, \theta) = \pi(s_t | y^T, s_{t+1}, \theta) \propto \pi(s_t | y^t, \theta)\eta_{s_{t+1} s_t}.$$

Step 4. Given s^T, the transition probabilities are simulated from independent Dirichlet distributions:

$$\pi(\eta | s^T) = \prod_{k=1}^{K} D(e_{k1} + N_{k1}, K, e_{kk} + N_{kk}),$$

where $N_{ij} = \# \{s_i = j | s_{i-1} = k \}.$

We start the sampler by simulating the VAR parameters and we therefore need a starting value for s^T. We define it to be $s_i = 1$, if y_t is below average, and $s_i = 2$, if y_t is above average.
Appendix C: Parsimonious model specifications and marginal likelihood

To illustrate our model specification procedure, graph 27 reproduces the posterior distribution of the (first-lag) VAR-parameters for the UK system of loans to non-financial corporations. State identification is based on the constant in the investment equation, which means that all simulated state-dependent parameters and the state variable are reordered accordingly to fulfill the restriction $\beta_1(1) < \beta_1(2)$.

To obtain the parsimonious specification, in a first round, we restrict the insignificant parameters on the second lag to zero. Then, we restrict the parameters that are not switching (crossed out once) to be equal across regimes. And finally, insignificant parameters on the first lag are restricted to zero (crossed out twice). In graph 27, we reproduce the marginal distributions, which we obtain after restricting the insignificant parameters on the second lag to zero (see the final specification in appendix D).

Graph 27: Posterior distributions of the system of loans to firms for the UK
To test the parsimonious switching specification against the unrestricted and the linear alternatives, we compare the marginal likelihoods of the respective models, i.e. we compute Bayes factors. To estimate the marginal likelihood, first note that the model likelihood can be obtained by rearranging the following identity (see also Frühwirth-Schnatter, 2004):

$$1 = \frac{\int \alpha(\theta) \pi^*(\theta \mid y^T) q(\theta) d(\theta)}{\int \alpha(\theta) q(\theta) \pi(\theta \mid y^T) d(\theta)} = \frac{\int \alpha(\theta) \pi^*(\theta \mid y^T) q(\theta) d(\theta)}{L(y^T) \int \alpha(\theta) q(\theta) \pi(\theta \mid y^T) d(\theta)},$$

where $\pi^*(\theta \mid y^T)$ is the unnormalized posterior of the model parameters, $\pi(\theta \mid y^T) \propto \pi^*(\theta \mid y^T)$, the arbitrary function $\alpha(\theta)$ is set such that $\int \alpha(\theta) \pi(\theta \mid y^T) q(\theta) d(\theta) > 0$, and $q(\theta)$ is a density approximating in a reasonable manner the posterior $\pi(\theta \mid y^T)$. If E_f denotes the expectation with respect to the density f, we can express $L(y^T)$ as:

$$L(y^T) = \frac{\int \alpha(\theta) \pi^*(\theta \mid y^T) q(\theta) d(\theta)}{\int \alpha(\theta) q(\theta) \pi(\theta \mid y^T) d(\theta)} = \frac{E_q \left(\alpha(\theta) \pi^*(\theta \mid y^T) \right)}{E_\pi \left(\alpha(\theta) q(\theta) \right)} \cdot$$

Suppose we have a sample of size M out of $\pi(\theta \mid y^T)$, $\theta^{(1)}, K, \theta^{(M)}$, and of size L out of $q(\theta), \tilde{\theta}^{(1)}, K, \tilde{\theta}^{(L)}$, then we may estimate the model likelihood by averaging:

$$\hat{L}(y^T) = \frac{\hat{E}_q}{\hat{E}_\pi} = \frac{E_q \left(\alpha(\tilde{\theta}^{(i)} \mid y^T) \pi^*(\tilde{\theta}^{(i)} \mid y^T) \right)}{E_\pi \left(\alpha(\theta^{(m)} \mid y^T) \right)} \cdot$$

Frühwirth-Schnatter (2004) demonstrates that the most accurate result is obtained by using the optimal bridge function (Meng and Wong, 1996) for $\alpha(\theta)$, and by using the mixture of posterior distributions to simulate L values from $q(\theta)$:

$$q(\theta) = U^{-1} \sum_{u=1}^U \pi(\beta \mid y^T, s^{(u)\tau}, \Sigma^{(u)}) \pi(\Sigma \mid y^T, s^{(u)\tau}, \beta^{(u)}) \pi(\eta \mid s^{(u)\tau}).$$
The U elements that form the mixture are chosen randomly from the simulations of the MCMC output, whereas the M values out of $\pi(\theta | y^T)$ entering $\hat{L}(y^T)$ may directly be chosen (randomly) from the simulated parameter values of the MCMC output.

Appendix D: Parsimonious model specifications

The results discussed in section 5 were obtained by estimating the following parsimonious specifications. The notation $a(s_i)$ indicates that the coefficient is switching, a signals that the coefficient is restricted to be equal across regimes and 0 denotes that coefficients are restricted to zero. Regime identification is based on the coefficients in bold face. The variables in the system for loans to non-financial corporations are ordered as follows: first investment, then imports, inflation, loans to non-financial corporations and finally the three-month interest rate. In the system for loans to households, households’ consumption comes first, followed by net disposable income, inflation, loans to households and the three-month interest rate.

Austria

Loans to non-financial corporations:

$$
\begin{align*}
\begin{bmatrix}
\nu(s_i) \\
\omega(s_i) \\
y_t
\end{bmatrix} &=
\begin{bmatrix}
a_i(s_i) & 0 & a_i & a_i \\
0 & a_i(s_i) & a_i & a_i(s_i) \\
0 & a_i & a_i(s_i) & a_i(s_i) & a_i
\end{bmatrix}
\begin{bmatrix}
a_2(s_i) \\
0 \\
y_{t-1}
\end{bmatrix} +
\begin{bmatrix}
0 \\
0 \\
y_{t-2} + \epsilon_i
\end{bmatrix} \\
\end{align*}
$$

Loans to households:

$$
\begin{align*}
\begin{bmatrix}
\nu(s_i) \\
\omega(s_i) \\
y_t
\end{bmatrix} &=
\begin{bmatrix}
a_i(s_i) & a_i(s_i) & 0 & a_i(s_i) \\
0 & a_i(s_i) & a_i(s_i) & a_i(s_i) \\
0 & a_i & a_i(s_i) & a_i(s_i) & a_i
\end{bmatrix}
\begin{bmatrix}
a_2(s_i) \\
0 \\
y_{t-1}
\end{bmatrix} +
\begin{bmatrix}
0 \\
0 \\
y_{t-2} + \epsilon_i
\end{bmatrix}
\end{align*}
$$

45
<table>
<thead>
<tr>
<th>Country</th>
<th>Loans to non-financial corporations:</th>
<th>Loans to households:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>$y_t = \begin{bmatrix} u(s_t) \ \phi(s_t) \ \psi(s_t) \end{bmatrix} = \begin{bmatrix} a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) \end{bmatrix} \begin{bmatrix} a_2(s_t) \ 0 \ 0 \ 0 \ 0 \end{bmatrix}$</td>
<td>$y_t = \begin{bmatrix} u(s_t) \ \phi(s_t) \ \psi(s_t) \end{bmatrix} = \begin{bmatrix} a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) \end{bmatrix} \begin{bmatrix} a_2(s_t) \ 0 \ 0 \ 0 \ 0 \end{bmatrix}$</td>
</tr>
<tr>
<td></td>
<td>$\begin{bmatrix} 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \end{bmatrix} \begin{bmatrix} 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) \end{bmatrix} \begin{bmatrix} a_2(s_t) \ 0 \ 0 \ 0 \ 0 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \end{bmatrix} \begin{bmatrix} 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) \end{bmatrix} \begin{bmatrix} a_2(s_t) \ 0 \ 0 \ 0 \ 0 \end{bmatrix}$</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Loans to non-financial corporations:</td>
<td>Loans to households:</td>
</tr>
<tr>
<td></td>
<td>$y_t = \begin{bmatrix} u(s_t) \ \phi(s_t) \ \psi(s_t) \end{bmatrix} = \begin{bmatrix} a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) \end{bmatrix} \begin{bmatrix} a_2(s_t) \ 0 \ 0 \ 0 \ 0 \end{bmatrix}$</td>
<td>$y_t = \begin{bmatrix} u(s_t) \ \phi(s_t) \ \psi(s_t) \end{bmatrix} = \begin{bmatrix} a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) \end{bmatrix} \begin{bmatrix} a_2(s_t) \ 0 \ 0 \ 0 \ 0 \end{bmatrix}$</td>
</tr>
<tr>
<td></td>
<td>$\begin{bmatrix} 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \end{bmatrix} \begin{bmatrix} 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) \end{bmatrix} \begin{bmatrix} a_2(s_t) \ 0 \ 0 \ 0 \ 0 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \end{bmatrix} \begin{bmatrix} 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) \end{bmatrix} \begin{bmatrix} a_2(s_t) \ 0 \ 0 \ 0 \ 0 \end{bmatrix}$</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Loans to non-financial corporations:</td>
<td>Loans to households:</td>
</tr>
<tr>
<td></td>
<td>$y_t = \begin{bmatrix} u(s_t) \ \phi(s_t) \ \psi(s_t) \end{bmatrix} = \begin{bmatrix} a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) \end{bmatrix} \begin{bmatrix} a_2(s_t) \ 0 \ 0 \ 0 \ 0 \end{bmatrix}$</td>
<td>$y_t = \begin{bmatrix} u(s_t) \ \phi(s_t) \ \psi(s_t) \end{bmatrix} = \begin{bmatrix} a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) \end{bmatrix} \begin{bmatrix} a_2(s_t) \ 0 \ 0 \ 0 \ 0 \end{bmatrix}$</td>
</tr>
<tr>
<td></td>
<td>$\begin{bmatrix} 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \end{bmatrix} \begin{bmatrix} 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) \end{bmatrix} \begin{bmatrix} a_2(s_t) \ 0 \ 0 \ 0 \ 0 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \end{bmatrix} \begin{bmatrix} 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) & a_1(s_t) \ 0 & 0 & a_1(s_t) & a_1(s_t) & a_1(s_t) \end{bmatrix} \begin{bmatrix} a_2(s_t) \ 0 \ 0 \ 0 \ 0 \end{bmatrix}$</td>
</tr>
</tbody>
</table>
Index of Working Papers:

August 28, 1990 Pauer Franz 11) Hat Böhm-Bawerk Recht gehabt? Zum Zusammenhang zwischen Handelsbilanzpassivum und Budgetdefizit in den USA2)

March 20, 1991 Backé Peter 21) Ost- und Mitteleuropa auf dem Weg zur Marktwirtschaft - Anpassungskrise 1990

March 14, 1991 Pauer Franz 31) Die Wirtschaft Österreichs im Vergleich zu den EG-Staaten - eine makroökonomische Analyse für die 80er Jahre

May 28, 1991 Mauler Kurt 41) The Soviet Banking Reform

July 16, 1991 Pauer Franz 51) Die Auswirkungen der Finanzmarkt- und Kapitalverkehrsliberalisierung auf die Wirtschaftsentwicklung und Wirtschaftspolitik in Norwegen, Schweden, Finnland und Großbritannien - mögliche Konsequenzen für Österreich3)

August 1, 1991 Backé Peter 61) Zwei Jahre G-24-Prozess: Bestandsaufnahme und Perspektiven unter besonderer Berücksichtigung makroökonomischer Unterstützungsleistungen4)

August 8, 1991 Holzmann Robert 71) Die Finanzoperationen der öffentlichen Haushalte der Reformländer CSFR, Polen und Ungarn: Eine erste quantitative Analyse

January 27, 1992 Pauer Franz 81) Erfüllung der Konvergenzkriterien durch die EG-Staaten und die EG-Mitgliedswerber Schweden und Österreich5)

October 12, 1992 Hochreiter Eduard (Editor) 91) Alternative Strategies For Overcoming the Current Output Decline of Economies in Transition

November 10, 1992 Hochreiter Eduard and Winckler Georg 101) Signaling a Hard Currency Strategy: The Case of Austria

1) vergriffen (out of print)
2) In abgeänderter Form erschienen in Berichte und Studien Nr. 4/1990, S 74 ff
3) In abgeänderter Form erschienen in Berichte und Studien Nr. 4/1991, S 44 ff
4) In abgeänderter Form erschienen in Berichte und Studien Nr. 3/1991, S 39 ff
5) In abgeänderter Form erschienen in Berichte und Studien Nr. 1/1992, S 54 ff
<table>
<thead>
<tr>
<th>Date</th>
<th>Author(s)</th>
<th>Paper Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 12, 1993</td>
<td>Hochreiter Eduard</td>
<td>11 The Impact of the Opening-up of the East on the Austrian Economy - A First Quantitative Assessment</td>
</tr>
<tr>
<td>June 8, 1993</td>
<td>Anulova Guzel</td>
<td>12 The Scope for Regional Autonomy in Russia</td>
</tr>
<tr>
<td>July 14, 1993</td>
<td>Mundell Robert</td>
<td>13 EMU and the International Monetary System: A Transatlantic Perspective</td>
</tr>
<tr>
<td>November 29, 1993</td>
<td>Hochreiter Eduard</td>
<td>14 Austria’s Role as a Bridgehead Between East and West</td>
</tr>
<tr>
<td>March 8, 1994</td>
<td>Hochreiter Eduard</td>
<td>15 Prospects for Growth in Eastern Europe</td>
</tr>
<tr>
<td>June 8, 1994</td>
<td>Mader Richard</td>
<td>16 A Survey of the Austrian Capital Market</td>
</tr>
<tr>
<td>September 1, 1994</td>
<td>Andersen Palle and</td>
<td>17 Trade and Employment: Can We Afford Better Market Access for Eastern Europe?</td>
</tr>
<tr>
<td></td>
<td>Dittus Peter</td>
<td></td>
</tr>
<tr>
<td>November 21, 1994</td>
<td>Rautava Jouko</td>
<td>18 Interdependence of Politics and Economic Development: Financial Stabilization in Russia</td>
</tr>
<tr>
<td>January 30, 1995</td>
<td>Hochreiter Eduard</td>
<td>19 Austrian Exchange Rate Policy and European Monetary Integration - Selected Issues</td>
</tr>
<tr>
<td>October 3, 1995</td>
<td>Groeneveld Hans</td>
<td>20 Monetary Spill-over Effects in the ERM: The Case of Austria, a Former Shadow Member</td>
</tr>
<tr>
<td>December 6, 1995</td>
<td>Frydman Roman et al</td>
<td>21 Investing in Insider-dominated Firms: A Study of Voucher Privatization Funds in Russia</td>
</tr>
<tr>
<td>March 5, 1996</td>
<td>Wissels Rutger</td>
<td>22 Recovery in Eastern Europe: Pessimism Confounded?</td>
</tr>
<tr>
<td>June 25, 1996</td>
<td>Pauer Franz</td>
<td>23 Will Asymmetric Shocks Pose a Serious Problem in EMU?</td>
</tr>
<tr>
<td>September 19, 1997</td>
<td>Koch Elmar B.</td>
<td>24 Exchange Rates and Monetary Policy in Central Europe - a Survey of Some Issues</td>
</tr>
<tr>
<td>April 15, 1998</td>
<td>Weber Axel A.</td>
<td>25 Sources of Currency Crises: An Empirical Analysis</td>
</tr>
<tr>
<td>Date</td>
<td>Authors</td>
<td>Number</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>May 28, 1998</td>
<td>Brandner Peter, Diebalek Leopold and Schuberth Helene</td>
<td>26</td>
</tr>
<tr>
<td>June 20, 1998</td>
<td>MacDonald Ronald</td>
<td>28</td>
</tr>
<tr>
<td>June 30, 1998</td>
<td>Campa José and Wolf Holger</td>
<td>29</td>
</tr>
<tr>
<td>July 3, 1998</td>
<td>Papell David H.</td>
<td>30</td>
</tr>
<tr>
<td>July 20, 1998</td>
<td>Chinn Menzie David</td>
<td>31</td>
</tr>
<tr>
<td>September 30, 1998</td>
<td>Christine Gartner, Gert Wehinger</td>
<td>33</td>
</tr>
<tr>
<td>November 5, 1998</td>
<td>José Viñals and Juan F. Jimeno</td>
<td>34</td>
</tr>
<tr>
<td>December 11, 1998</td>
<td>Helene Schuberth and Gert Wehinger</td>
<td>35</td>
</tr>
<tr>
<td>December 21, 1998</td>
<td>Dennis C. Mueller and Burkhard Raunig</td>
<td>36</td>
</tr>
<tr>
<td>May 21, 1999</td>
<td>Alois Geyer and Richard Mader</td>
<td>37</td>
</tr>
<tr>
<td>July 29, 1999</td>
<td>José Viñals and Javier Vallés</td>
<td>38</td>
</tr>
<tr>
<td>December 20, 1999</td>
<td>John R. Freeman, Jude C. Hays and Helmut Stix</td>
<td>39</td>
</tr>
<tr>
<td>Date</td>
<td>Authors</td>
<td>Page</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>March 01, 2000</td>
<td>Eduard Hochreiter and Tadeusz Kowalski</td>
<td>40</td>
</tr>
<tr>
<td>March 20, 2000</td>
<td>Katrin Wesche</td>
<td>41</td>
</tr>
<tr>
<td>June 20, 2000</td>
<td>Jarko Fidrmuc and Jan Fidrmuc</td>
<td>42</td>
</tr>
<tr>
<td>March 06, 2001</td>
<td>Marc Flandreau</td>
<td>43</td>
</tr>
<tr>
<td>May 01, 2001</td>
<td>Otmar Issing</td>
<td>44</td>
</tr>
<tr>
<td>May 18, 2001</td>
<td>Sylvia Kaufmann</td>
<td>45</td>
</tr>
<tr>
<td>May 31, 2001</td>
<td>Paul De Grauwe and Marianna Grimaldi</td>
<td>46</td>
</tr>
<tr>
<td>June 25, 2001</td>
<td>Vítor Gaspar, Gabriel Perez-Quiros and Jorge Sicilia</td>
<td>47</td>
</tr>
<tr>
<td>July 27, 2001</td>
<td>David T. Llewellyn</td>
<td>48</td>
</tr>
<tr>
<td>August 24, 2001</td>
<td>Helmut Elsinger and Martin Summer</td>
<td>49</td>
</tr>
<tr>
<td>September 1, 2001</td>
<td>Michael D. Goldberg and Roman Frydman</td>
<td>50</td>
</tr>
<tr>
<td>September 8, 2001</td>
<td>Vittorio Corbo, Oscar Landerretche and Klaus Schmidt-Hebbel</td>
<td>51</td>
</tr>
<tr>
<td>September 25, 2001</td>
<td>Kenneth N. Kuttner and Adam S. Posen</td>
<td>52</td>
</tr>
<tr>
<td>Date</td>
<td>Authors</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>October 1, 2001</td>
<td>Luca Dedola and Sylvain Leduc</td>
<td>53</td>
</tr>
<tr>
<td>October 10, 2001</td>
<td>Tommaso Monacelli</td>
<td>54</td>
</tr>
<tr>
<td>December 3, 2001</td>
<td>Peter Brandner, Harald Grech and Helmut Stix</td>
<td>55</td>
</tr>
<tr>
<td>January 2, 2002</td>
<td>Sylvia Kaufmann</td>
<td>56</td>
</tr>
<tr>
<td>January 7, 2002</td>
<td>Martin Summer</td>
<td>57</td>
</tr>
<tr>
<td>January 28, 2002</td>
<td>Maria Valderrama</td>
<td>58</td>
</tr>
<tr>
<td>February 18, 2002</td>
<td>Gabriela de Raaij and Burkhard Raunig</td>
<td>59</td>
</tr>
<tr>
<td>February 25, 2002</td>
<td>Ben R. Craig and Joachim G. Keller</td>
<td>60</td>
</tr>
<tr>
<td>February 28, 2002</td>
<td>Peter Backé, Jarko Fidrmuc, Thomas Reininger and Franz Schardax</td>
<td>61</td>
</tr>
<tr>
<td>April 8, 2002</td>
<td>Jesús Crespo-Cuaresma, Maria Antoinette Dimitz and Doris Ritzberger-Grünwald</td>
<td>62</td>
</tr>
<tr>
<td>May 29, 2002</td>
<td>Markus Knell</td>
<td>63</td>
</tr>
<tr>
<td>June 19, 2002</td>
<td>Sylvester C.W. Eijffinger (comments by: José Luis Malo de Molina and by Franz Seitz)</td>
<td>64</td>
</tr>
<tr>
<td>Date</td>
<td>Authors</td>
<td>Page</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>July 1, 2002</td>
<td>Sebastian Edwards and I. Igal Magendzo (comments by Luis Adalberto Aquino Cardona and by Hans Genberg)</td>
<td>65</td>
</tr>
<tr>
<td>July 10, 2002</td>
<td>David Begg (comment by Peter Bofinger)</td>
<td>66</td>
</tr>
<tr>
<td>July 15, 2002</td>
<td>Andrew Berg, Eduardo Borensztein, and Paolo Mauro (comment by Sven Arndt)</td>
<td>67</td>
</tr>
<tr>
<td>July 22, 2002</td>
<td>Eduard Hochreiter, Klaus Schmidt-Hebbel and Georg Winckler (comments by Lars Jonung and George Tavlas)</td>
<td>68</td>
</tr>
<tr>
<td>July 29, 2002</td>
<td>Michael J. Artis (comment by David Archer)</td>
<td>69</td>
</tr>
<tr>
<td>August 5, 2002</td>
<td>Jürgen von Hagen, Susanne Mundschenk (comments by Thorsten Polleit, Gernot Doppelhofer and Roland Vaubel)</td>
<td>70</td>
</tr>
<tr>
<td>August 12, 2002</td>
<td>Dimitri Boreiko (comment by Ryszard Kokoszczynski)</td>
<td>71</td>
</tr>
<tr>
<td>August 19, 2002</td>
<td>Ansgar Belke and Daniel Gros (comments by Luís de Campos e Cunha, Nuno Alves and Eduardo Levy-Yeyati)</td>
<td>72</td>
</tr>
<tr>
<td>August 26, 2002</td>
<td>Friedrich Fritzer, Gabriel Moser and Johann Scharler</td>
<td>73</td>
</tr>
<tr>
<td>Date</td>
<td>Author(s)</td>
<td>Page</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>September 30, 2002</td>
<td>Sebastian Edwards</td>
<td>74</td>
</tr>
<tr>
<td>October 3, 2002</td>
<td>George Kopits (comments by Zsolt Darvas and Gerhard Illing)</td>
<td>75</td>
</tr>
<tr>
<td>October 10, 2002</td>
<td>Eduard Hochreiter, Anton Korinek and Pierre L. Siklos (comments by Jeannine Bailliu and Thorvaldur Gyfason)</td>
<td>76</td>
</tr>
<tr>
<td>October 14, 2002</td>
<td>Peter Brandner, Harald Grech</td>
<td>77</td>
</tr>
<tr>
<td>October 21, 2002</td>
<td>Alfred Stiglbauer, Florian Stahl, Rudolf Winter-Ebmer, Josef Zweimüller</td>
<td>78</td>
</tr>
<tr>
<td>October 28, 2002</td>
<td>Elsinger, Alfred Lehar and Martin Summer</td>
<td>79</td>
</tr>
<tr>
<td>November 4, 2002</td>
<td>Helmut Stix</td>
<td>80</td>
</tr>
<tr>
<td>June 30, 2003</td>
<td>Markus Knell, Helmut Stix</td>
<td>81</td>
</tr>
<tr>
<td>July 7, 2003</td>
<td>Helmut Stix</td>
<td>82</td>
</tr>
<tr>
<td>July 14, 2003</td>
<td>Sylvia Kaufmann</td>
<td>83</td>
</tr>
<tr>
<td>July 21, 2003</td>
<td>Jesus Crespo Cuaresma, Ernest Gnan, Doris Ritzberger-Gruenwald</td>
<td>84</td>
</tr>
<tr>
<td>Date</td>
<td>Authors</td>
<td>Page</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>September 22, 2003</td>
<td>Burkhard Raunig</td>
<td>86</td>
</tr>
<tr>
<td>May 3, 2004</td>
<td>Juergen Eichberger, Martin Summer</td>
<td>87</td>
</tr>
<tr>
<td>June 7, 2004</td>
<td>Markus Knell, Helmut Stix</td>
<td>88</td>
</tr>
<tr>
<td>August 27, 2004</td>
<td>Martin Schneider, Martin Spitzer</td>
<td>89</td>
</tr>
<tr>
<td>September 20, 2004</td>
<td>Sylvia Kaufmann, Maria Teresa Valderrama</td>
<td>90</td>
</tr>
</tbody>
</table>